簡易檢索 / 詳目顯示

研究生: 陳哲訓
Chen, Che-Hsun
論文名稱: 新型單級功因校正器之二倍線頻諧波消減控制
Double Line Frequency Harmonic Reduction Control of a Novel Single Stage PFC
指導教授: 潘晴財
Pan, Ching-Tsai
口試委員: 潘晴財
Pan, Ching-Tsai
江茂欽
Chiang, Mao-Chin
陳政裕
Chen, Cheng-Yu
林昇甫
Lin, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 138
中文關鍵詞: 功因校正器二倍線頻諧波無橋式電路
外文關鍵詞: Power factor corrector, double line frequency harmonic, Bridgeless
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於單相交直流轉換器以及直交流轉換器的輸入端與輸出端為交流電,因此其瞬時功率皆帶有二倍線頻的諧波成份,即頻率為交流電源頻率的兩倍,於此稱為二次諧波。而傳統文獻上為了改善此二次諧波的影響,必須增加額外的電路與主動式開關以引導二次諧波成份,因此成本也隨著提高,且控制較為複雜。而業界上則是使用過於龐大的濾波元件以降低二次諧波成份,不僅無法有效的設計元件值,也降低功率密度,額外增加成本。有鑒於這個困境,本論文的主要目的在於尋找不須額外增加任何元件,且能夠有效消除二次諧波成份的控制策略。
    而本論文主要貢獻點如下:第一點貢獻為提出一新型單級功因校正器,其不僅能夠擁有高功率因數與高轉換效率,僅需三個主動式開關,且皆為共地,因此製作驅動電路時不須額外隔離,且提供了更多的控制自由度。第二點貢獻為提出一個近似的二倍線頻諧波等效電路,其在目前文獻上,尚未被提出。第三點貢獻為利用本論文所導演之二倍線頻諧波關係式與等效電路,進行分析並提出一消除輸出電壓二次諧波成份之控制策略與電路元件設計流程,如此可大幅減少實體電路中濾波元件之體積。最後依據本文理論與分析之結果,設計與研製一規格為輸入電壓110 V均方根值,與輸出電壓48 V直流值,以及額定功率為200 W之雛型系統,並經由電路模擬軟體與實驗結果相互驗證所提新型轉換器的可行性,從輕載至滿載皆可有效消除輸出電壓二次頻諧波成份達97%,功率因數維持於0.98以上,且轉換效率維持90.7%以上。


    It is a well known fact that, the instantaneous power of a single phase rectifier or inverter, always contains a double line frequency component. As a result, it is necessary to either add additional components to reduce the harmonic or increase the filter capacitor. In view of this dilemma, the motivation of this thesis is mainly focused to search for an effective double line frequency harmonic reduction control technique without adding additional components. Basically, the major contributions of this thesis can be summarized as follows. First, a novel single stage power factor corrector (PFC) topology is proposed. The new PFC contains only three active switches with a common terminal. This can not only simplify the gate driver but also provide more control flexibility. Then, an approximate double line frequency harmonic equivalent circuit is proposed for practical applications. To the author’s best knowledge, that double line frequency harmonic equivalent circuit has never been proposed in the world. Third, based on this model, a harmonic reduction technique is proposed to reduce the double line frequency harmonic without adding any component. Finally, a prototype PFC with 110V AC input, 48 V DC output and 200 W rating is constructed for verifying the effectiveness of the proposed control. Experimental results show that more than 97% of the output double line frequency harmonic can be reduced adding any extra component while the PF is kept above 0.98 and the efficiency remains above 90.7% from 40 W to 200 W loading. Keyword: Power factor corrector, double line frequency harmonic, Bridgeless

    摘要 英文摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 本論文之貢獻 1.4 論文內容概述 第二章 主動式功因校正器簡介 2.1 前言 2.2 兩級式升壓型功因校正器簡介 2.3 單級無橋式升壓型功因校正器簡介 2.4 單級主動式邱克型功因校正器簡介 第三章 新型單級功因校正器之二倍線頻諧波消減控制策略 3.1 前言 3.2 新型單級無橋式功因校正器架構與工作原理 3.3 新型單級無橋式功因校正器之數學模型建立 3.4 二倍線頻諧波消減閉迴路控制策略 第四章 硬體製作與實驗結果 4.1 前言 4.2 功率電路製作 4.3 控制電路製作 4.4 實際量測結果 第五章 結論 參考文獻 附錄A – 新型轉換器相關模擬電路 附錄B – 整流正弦波之傅立葉級數展開 附錄C – 新型轉換器之轉移函數 附錄D – 誤差修正因子

    [1] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, Second Edition, John Wiley & Sons, Inc., 1996.
    [2] IEC61000-3-2,“Electromagnetic compatibility (EMC), Part3:Limits Section 2:Limits for harmonic current emissions,”1995.
    [3] J.C. Salmon, “Techniques for minimizing the input current distortion of current-controlled single-phase boost rectifiers,” IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 509-520, 1993.
    [4] J.-S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” IEEE Power Electronics Conference, pp. 267-273, 1993.
    [5] S. Basu, and T. M. Undeland, “Inductor design considerations for optimizing performance & cost of continuous mode boost PFC converters,” IEEE Power Electronics Conference, pp. 1133-1138, 2005.
    [6] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proceedings Electric Power Applications, vol. 148,
    no. 2, pp. 202-206, 2001.
    [7] C. T. Pan and J. J. Shieh, “A single-stage three-phase boost–buck AC/DC converter based on generalized zero-space vectors,” IEE Proceedings Electric Power Applications, vol. 14, no. 5, September 1999.
    [8] J. J. Shieh, “Sepic derived three phase switching mode rectifier with sinusoidal input current,” IEE Proceedings Electric Power Applications, vol. 147, no. 4, July 2000.
    [9] 游憲鵬,”基於廣義零向量單相升降壓型反流器之建模與設計”,國立清華大學碩士論文,中華民國九十八年六月。
    [10] EPRAC,『電力電子學綜論』,全華科技圖書股份有限公司。

    [11] 黃政彬,”單級功因校正器之二倍線頻諧波消減控制”,國立清華大學碩士論文,中華民國九十九年七月。
    [12] C. Liu and J. S. Lai, ”Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,” IEEE Trans. on Power Electronics, vol. 22, no. 4, July 2007.
    [13] T. Hirao, T. Shimizu, M. Ishikawa and K. Yasui, “A modified modulation control of a single-phase inverter with enhanced power decoupling for a photovoltaic AC module,” on Power Electronics and Applications European Conference, Aug 2006.
    [14] T. Shimizu and S. Suzuki, “A single-phase grid-connected inverter with power decoupling,” IEEE Power Electronics Conference,
    pp. 2918-2923, Sep 2010.
    [15] R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning and K. Rajashekara “A high power density single-phase PWM rectifier with active ripple energy storage,” IEEE Trans. on Power Electronics, vol. 26, no. 5, pp. 1430-1443, Jun. 2011.
    [16] M. Orabi and T. Ninomiya.“A unified design of single-Stage and two-stage PFC converter,” Power Electronics Specialist Conference,. PESC '03. 2003 IEEE 34th, vol. 4, pp 1720-1725, Jun. 2003.
    [17] J. Zhang, M. M Jovanovic and F. C Lee, “Comparison between CCM single-Stage and two-Stage boost PFC converters,” Applied Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual, vol. 1, pp. 335-341, Mar 1999.
    [18] F. Q. Wang, H. Zhang, X. K. Ma, “Intermediate-scale instability in two-stage power–factor correction converters,” IET Power Electronics, vol. 3, no. 3, pp. 438-445, May. 2010.
    [19] L. H. Dixon, “Average current mode control of switching power supplies,” in Proc. Unitrode Power Supply Design Sem., pp. 5.1–5.14, 1988.
    [20] J. Sebastian, M. Jaureguizar and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” on Industrial Electronics, Control and Instrumentation, IECON '94, 20th International Conference, vol. 3, pp. 1688-1693, Sep.1994.
    [21] L. Huber, J. Yungtaek and M.M Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans on Power Electronics, vol. 23, no. 3, pp. 1381-1391, May. 2008.
    [22] K. Pengju, W. Shuo and F. C. LEE, “Common mode EMI noise suppression for bridgeless PFC converters” IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 291-297, Jan. 2008.
    [23] J. Yungtaek, and M. M. Jovanovic, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. on Power Electronics, vol. 24, no. 1, pp. 85-93 Jan. 2009.
    [24] L. Qingnan, M. A. E. Andersen and O. C. Thomsen, “Conduction losses and common mode EMI analysis on bridgeless power factor correction,” on Power Electronics and Driver System, PEDS 2009, Nov 2009.
    [25] “Magnetic Powder Core” Chang Sung Corporation, Datasheet, 2011.
    [26] S. H. Lee, T. P. An and H. Cha “Mitigation of low frequency AC ripple in single-phase photovoltaic power conditions systems,“ Journal of Power Electronics, vol. 10, no. 3, May 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE