簡易檢索 / 詳目顯示

研究生: 楊紹暉
Yang, Shao-Hui
論文名稱: 嵌壁式通道摻雜析離蕭特基能障電晶體之研究
Study of Recessed Channel Dopant-Segregated Schottky Barrier MOSFETs
指導教授: 連振炘
Lien, Chenhsin
施君興
Shih, Chun-Hsing
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 嵌壁式通道摻雜析離蕭特基能障金氧半場效電晶體
外文關鍵詞: Recessed Channel, Dopant-Segregation, Schottky Barrier MOSFET
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,提出並模擬一種嵌壁式通道架構應用於摻雜析離式蕭特基能障金氧半場效電晶體上,其能有效地抑制短通道效應現象,並能同時提供一個好的開閉電流比值,其中摻雜析離層的引入能獲取較大的開閉電流比值,有效的消除嵌壁式通道之架構所伴隨而來的寄生問題。此外,模擬結果顯示,嵌壁式通道之架構能對所分段之通道進行個別的操作行為,此一獨特的設計可以抑制汲極電壓作用在源極端之影響力,使得嵌壁式通道之電晶體在環境參數的變動下對於元件尺寸的變動較不敏感。然而嵌壁式通道架構本質上具有較差的導通電流尺寸,因此,提出一種改良式的嵌壁式通道架構,亦即使用非對稱性之架構來提供更好之導通電流,並降低了雙向導通的現象,最重要的是相較傳統摻雜析離式蕭特基能障電晶體而言,此改良之嵌壁式通道架構能同時保有其對隨閘極特徵長度降低而產生的短通道效應現象的抑制能力,這些元件特性使得嵌壁式通道之架構在未來元件電路應用上得以提供一個具有潛力的考量。


    In this thesis, a recessed channel structure of dopant segregated Schottky barrier MOSFET (RC-DSSBMOS) is proposed and simulated for achieving suppressed short-channel effect and good on/off current ratio in scaled Schottky barrier MOSFETs. The simulated results shows that the recessed channel structure can alleviate the lateral field penetration effect coming from the source and drain electrodes. Thus, it is rather insensitive of short-channel device characteristics to the variations of drain voltages. The dopant segregation layer helps to have a larger on/off current ratio, and to counteract the parasitic problem caused by the recessed channel structure. Importantly, an asymmetric structure of RC-DSSBMOS is proposed and designed herein to have an enhanced driving on-current, minimized ambipolar conduction and a suitable short-channel effect as the devices are scaled down.

    第一章 序論 1.1 摻雜析離式蕭特基能障電晶體 1.2 論文架構 第二章 蕭特基能障金氧半場效電晶體 2.1 雙向導通特性與操作行為模式 2.2 元件設計與模擬特性 2.3 摻雜析離式蕭特基能障金氧半場效電晶體 第三章 嵌壁式通道蕭特基能障電晶體 3.1 元件架構與操作特性 3.2 元件特性比較 3.3 嵌壁式通道架構之優缺點 第四章 元件架構改良與比較 4.1 嵌壁式通道道之摻雜析離蕭特基能障電晶體 4.2 不對稱之嵌壁式通道架構 4.3 微縮特性比較 第五章 總結 5.1 嵌壁式通道之設計考量 5.2 非對稱性架構設計 參考文獻

    [1] Wang, C. Synder, John P. Tucker and J. R., “Sub-40nm PtSi Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect-Transistors,” in Apply Physics Letters, VOL. 74, NO. 8, February1999, pp. 1174-1176.
    [2] Mikael Ostling, Valur Gudmundsson, Per-Erik Hellstrom, B. Gunnar Malm, Zhen Zhang and Shi-Li Zhang, ”Towards Schottky-Barrier Source/Drain MOSFETs,” in 978-1-4244-2186-2/08 2008 IEEE.
    [3] Jing Guo and Mark S. Lundstrom, “A Computational Study of Thin-Body, Double-Gate, Schottky Barrier MOSFETs,” in IEEE Transactions on Electron Devices, VOL. 49, NO. 11, November 2002, pp. 1897-1902.
    [4] Ken Uchida, Kazuya Matsuzawa, Junji Koga, Shin-ichi Takagi and Akira Toriumi, ”Enhancement of Hot-Electron Generation Rate in Schottky Source Metal-Oxide-Semiconductor Field-Effect Transistors,” in Applied Physics Letters, VOL. 76, NO. 26, 26 June 2000, pp. 3992-3994.
    [5] H. Takeda, T. Yamamoto, T. Ikezamw, M. Kawada, S. Takagi and M. Hane, “Impact of Source-to-Channel Carrier Injection Properties on Device Performance of Sub-100nm Metal Source/Drain Ge-pMOSFETs,” in 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 58-59.
    [6] Keiji Ikeda, Yoshimi Yamashita and Naoharu Sugiyama, “Modulation of NiGe/Ge Schottky Barrier Height by Sulfur Segregation during Ni Germanidation,” in Applied Physics Letters 88, 152115 (2006).
    [7] Toyoji Yamamoto, Yoshimi Yamashita, Masatomi Harada, Noriyuki Taoka, Keiji Ikeda, Kunihiro Suzuki, Osamu Kiso, Naoharu Sugiyama and Shin-Ichi Takagi, “High Performance 60nm Gate Length Germanium P-MOSFETs with Ni Germanid Metal Source/Drain,” in 2007 IEEE, pp. 1041-1043.
    [8] Shiying Xiong, Tsu-Jae King, and Jeffrey Bokor, “A Comparison Study of Symmetric Ultrathin-Body Double-Gate Devices with Metal Source/Drain and Doped Source/Drain,” in IEEE Transactions on Electron Devices, VOL. 52, NO. 8, August 2005, pp. 1859-1867.
    [9] S.F. Feste, M. Zhang, J. Knoch, S.-L. Zhang, and S. Mantl, “Variability in SOI Schottky Barrier MOSFETs,” in 2008 IEEE, pp. 27-30.
    [10] J. Knoch and J. Appenzeller, “Impact of the Channel Thickness on the Performance of Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors,” in Applied Physics Letters, VOL. 81, NO. 16, 14 October 2002, pp. 3082-3084.
    [11] M. Zhang, J. Knoch, Joerg Appenzeller, and S. Mantl, “Improved Carrier Injection in Ultrathin-Body SOI Schottky-Barrier MOSFETs,” in IEEE Electron Device Letters, VOL. 28, NO. 3, March 2007, pp. 223-225.
    [12] Joachim Knoch, Min Zhang, Siegfried Mantl, and J. Appenzeller, “On the Performance of Single-Gate Ultrathin-Body SOI Schottky-Barrier MOSFETs,” in IEEE Transactions on Electron Devices, VOL. 53, NO. 7, July 2006, pp. 1669-1674.
    [13] Min Zhang, Joachim Knoch, Shi-Li Zhang, Sebastian Festa, Michael Schroter, and Siegfried Mantl, “Threshold Voltage Variation in SOI Schottky-Barrier MOSFETs,” IEEE Transactions on Electrons Devices, VOL. 55, NO. 3, March 2008, pp.858-865.
    [14] D.E. Grupp, Daniel Connelly, Carl Faulkner, and Paul A. Clifton, “A New Junction Technology for Low-Resistance Contacts and Schottky Barrier MOSFETs,” in Ext. Abs. the 5th International Workshop on Junction Technology 2005, pp. 99-102.
    [15] K. Baghbani Parizi, N. Peyvast, B. Kheyraddini Mousavi, S. Mohajerzadeh and M. Fathipour, “Schottky Barrier Nano-MOSFET with an Asymmetrically Oxidized Source/Drain Structure,” in Solid-State Electron(2009), doi:10.1016/j.sse.2009.09.010.
    [16] Daniel Connelly, Carl Faulkner, D.E. Grupp, and J.S. Harris, “A New Route to Zero-Barrier Metal Source/Drain MOSFETs,” in IEEE Transactions on Nanotechnology, VOL. 3, NO. 1, March 2004, pp. 98-104.
    [17] Norsyahida Jafar and Norhayati Soin, “Design Considerations of Sub-100nm Dual Material Gate Fully Depleted Silicon on Insulator (DMG-FD-SOI),” in ICSE2008 Proc. 2008, Johor Bahru, Malaysia, pp. 69-75.
    [18] Chun-Hsing Shih and Sheng-Pin Yeh, “Device Considerations and Design Optimizations for Dopant Segregated Schottky Barrier MOSFETs,” in Semicondutor Science and Technology, 23(2008) 125033 (10pp).
    [19] Bing-Yue Tsui, Chi-Pei, and Hsiao-Han Liu, “Method for Extracting Gate-Voltage-Dependent Source Injection Resistance of Modified Schottky Barrier (MSB) MOSFETs,” IEEE Electron Letters. VOL. 29, NO. 9, September 2008, pp. 1053-1055.
    [20] Sung-Jin Choi, Jin-Woo Han, Moon-Gyn Jang, Jin Soo Kim, Kwang Hee Kim, Gi Sung Lee, Jae Sub Oh, Myeong Ho Song, Yun Chang Park, Jeoung Woo Kim and Yang-Kyu Choi, “High Injection Efficiency and Low-Voltage Programming in a Dopant-Segregated Schottky Barrier (DSSB) FinFET SONOS for NOR-type Flash Memory,” in IEEE Electron Device Letters, VOL. 30, NO. 3, March 2009, pp. 1-4.
    [21] Sung-Jin Choi, Jin-Woo Han, Sungho Kim, Moon-Gyu Jang, Jin Soo Kim, Kwang Hee Kim, Gi Sung Lee, Jae Sub Oh, Myeong Ho Song, Yun Chang Park, Jeoung Woo Kim ang Yang-Kyu Choi, “Enhancement of Program Speed in Dopant-Segregated Schottky-Barrier (DSSB) FinFET SONOS for NAND-type Flash Memory,” in IEEE Electron Device Letters, VOL. 30, NO. 1, January 2009, pp. 78-81.
    [22] Pei Liang, Jianjun Jiang and Yi Song, “Fringe-Induced Barrier Lowering (FIBL) Included Sub-threshold Swing Model for Double Gate MOSFETs,” J. Phy. D: Appl. Phys, 41 (2008) 215109 (4pp).
    [23] Qiang Chen, Lihui Wang, James D. Meindl, “Fringe-Induced Barrier Lowering (FIBL) Included Sub-threshold Swing Model for Double Gate MOSFETs,” Solid-State Electronics, 49 (2005) 271-274.
    [24] G.C.-F. Yeap, S. Krishnan and Ming-Ren Lin, “Fringing-Induced Barrier Lowering (FIBL) in Sub-100nm MOSFETs with High-k Gate Dielectrics,” Electronics Letters 28th May 1998, VOL. 34, NO. 11, pp. 1150-1152.
    [25] Jakub Kedzierski, Peiqi Xuan, Erik H. Anderson, Jeffrey Bokor, Tsu-Jae King and Chenming Hu, “Complementary Silicide Source/Drain Thin-Body MOSFETs for the 20nm Gate Length Regime,” in 0-7803-6441-4/00/ 2000 IEEE.
    [26] Yaohui Zhang, Ruigangi Li, Sung-Kwon Hong and Kang L. Wang, “Nano-Scale Recessed Asymmetric Schottky Contacted CMOS,” in IEEE Nano-Devices, October 2001, pp. 195-200.
    [27] Yaohui Zhang, Jun Wan, Kang L., and Bich-Yen Nguyen, “Design of 10-nm-Scale Recessed Asymmetric Schottky Barrier MOSFETs,” in IEEE Electron Device Letters, VOL. 23, NO. 7, July 2002, pp. 419-421.
    [28] Jae Young Song, Jong Pil Kim, Sang Wan Kim Han Ki Jung, Jae Hyun Park, Jong Duk Lee, and Byung-Gook Park, “Fin and Recess Channel MOSFET (FiReFET) for Performance Enhancement of Sub-50nm DRAM Cell,” in ISDRS 2007, December 12-14, 2007, College Park, MD, USA.
    [29] Emmanuel Dubois and Paul Henri Bricount, “Short Channel Immunity and Current Drive Capabilities of Recessed MOSFETs in the Sub-50nm Regime,” in IVA-7.
    [30] Mizuki Ono, Masato Koyama, and Akira Nishiyama, “Recessed Channel and/or Buried Source/Drain Structures for Improvement in Performance of Schottky Barrier Source/Drain Transistors with High-k Gate Dielectrics,” in Solid-State Electronics, 51 (2007) 732-738.
    [31] Mansun Chan, Fariborz Assaderaghi, Stephen A. Parke, Selina S. Yuen, Chenming Hu and Ping K. Ko, “Recess Channel Structure for Reducing Source/Drain Series Resistance in Ultra-Thin SOI MOFET,” in 0-7803-1346-1/93/ 1993 IEEE, pp. 172-173.
    [32] Xing Zhang, Ru Huang, Xuemei Xi, Mansun Chan, Ping K. Ko, Yangyuan Wang, “The Investigation of Recessed SOI Devices,” in 1998 IEEE, pp. 720-723.
    [33] Jeongho Lyu, Byung-Gook Park, Kukjin Chun, and Jong Duk Lee, “A Novel 0.1μm MOSFET Structure with Inverted Sidewall and Recessed Channel,” in IEEE Electron Device Letters, VOL. 17, NO. 4, April 1996, pp. 157-160.
    [34] Jeongho Lyu, Byung-Gook Park, Kukjin Chun, and Jong Duk Lee, “A 0.1μm Inverted-Sidewall Recessed-Channel (ISRC) nMOSFET for High Performance and Reliability,” in 1995 IEEE, IEDM 95, pp. 431-434.
    [35] Jeongho Lyu, Byung-Gook Park, Kukjin Chun, and Jong Duk Lee, “Reduction of Hot-Carrier Generation in 0.1-μm Recessed Channel nMOSFET with Laterally Graded Channel Doping Profile,” in IEEE Electron Device Letters, VOL. 18, NO. 11, November 1997, pp. 535-537.
    [36] Paul-Henri Bricout and Emmanuel Dubois, “Short-Channel Effect Immunity and Current Capability of Sub-0.1-Micron MOSFETs Using a Recessed Channel,” in IEEE Transactions on Electron Devices, VOL. 43, NO. 8, August 1996, pp. 1251-1255.
    [37] Scott H. Coodwin and James D. Plummer, “Electrical Performance and Physics of Isolation Region Structures for VLSI,” in IEEE Transactions on Electron Devices, VOL. ED-31, VO. 7, July 1984, pp. 861-872.
    [38] Emmanuel Dubois, Jean-Louis Coppee, Bruno Baccus, and Dominique Collard, “A Study of the Electrical Performances of Isolation Structures,” in IEEE Transactions on Electron Devices, VOL. 37, NO. 6, June 1990, pp. 1477-1486.
    [39] Woo-Hyeong Lee, Young-June Park, and Jong Duk Lee, “A New 0.25-μm Recessed-Channel MOSFET with Selectively Halo-Doped Channel and Deep Graded Source/Drain,” IEEE Electron Device Letters, VOL. 14, NO. 12, December 1993, pp. 578-580.
    [40] Woo-Hyeong Lee, Young June Park, and Jong Duk Lee, “Gate Recessed (GR) MOSFET with Selectively Halo-Doped Channel and Deep Graded Source/Drain for Deep Submicron CMOS,” in 1993 IEEE, IEDM 93-135.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE