簡易檢索 / 詳目顯示

研究生: 莊鎧榤
Chuang, Kai-Chien.
論文名稱: 液靜壓軸承之油壓系統進階控制
Advanced Control of Hydraulic System for Hydrostatic Bearings
指導教授: 宋震國
Sung, Cheng-Kuo
杜佳穎
Tu, Jia-Ying
口試委員: 林士傑
LIN, SHIH-CHIEH
蕭德瑛
SHAW, DEIN
張禎元
CHANG, JEN-YUAN
董必正
Tung, Pi-Cheng
趙昌博
CHAO, CHANG-PO
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 液靜壓軸承反模型控制模型匹配控制液壓系統節流器
外文關鍵詞: model inverse control, OFCIA, model matching control, hydraulic system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前毛細管等被動式節流器廣泛的使用於液靜壓軸承,然而此種節流器無法有效地補償負載造成的供油壓力變化。本文提出另一種替代的方法,使用主動式比例壓力閥進行壓力控制來提高液靜壓軸承運行的精度,期在液靜壓軸承高速運作時,仍能藉由實時控制與監測系統,有效地、強健地補償節流器與液壓系統之壓力,維持軸承穩定運作達到液靜壓軸承預定之加工精度。
    為了達到實時控制與監測的目標,本文先介紹液靜壓線性平台之運動方程式並介紹滑塊之靜態模型,得到滑塊之油膜承載力與剛性。接著介紹實驗設備,設明主動式液壓調控裝置的概念、液壓調控設備與即時控制設備的連接。
    介紹完液靜壓線性平台理論與實驗設備後,接著介紹控制策略,在本研究中,採用雙重迴路控制策略,藉由內迴路策略初步控制油壓系統,再藉由外迴路控制方法,提升系統的響應速度並改善暫態反應。在實驗方面,先給定輸入電壓訊號,壓力傳感器量得壓力輸出訊號,將輸入與輸出數據轉入Matlab程式中,比較實驗輸出訊號與識別輸出訊號,得到系統識別之轉移函數。再結合供油設備與液壓軸承系統模型,並以dSPACE控制設備連接液壓軸承系統,即時讀取油壓系統之壓力等訊號,建立自動控制補償與監測設備。最後,實驗結果顯示所提出的主動控制架構有效地改善油壓的上升時間和追蹤精度。本文研究結果對未來的智能控制的發展和工具的製造提供一種可行的控制架構。


    Recent developments in precision manufacturing heighten the need of hydrostatic bearings for machine tools, because of the advantages of high stiffness, high precision, low friction and long service life, as compared with the traditional roller bearing systems. In literature, attention has been paid to the design of fixed-type restrictors such as capillaries for hydrostatic bearings. However, such passive flow restrictors could not effectively compensate for oil pressure variation as a result of loading changes. To seek an alternative for improving the operation precision of hydrostatic bearings, pressure control using active proportional valve is considered in this work. Four proportional valves are installed in the hydraulic system and controlled by advanced output feedback control with integral action and model matching techniques. Experimental studies on the actively-controlled hydrostatic system are performed. The results show that the rising time and tracking accuracy of the oil pressure are effectively improved by the proposed active control framework, thus sustaining the performance of hydraulic bearing. The success of this research offers a feasible control framework for the development of intelligent control and manufacture of machine tools in future work.

    目錄 致謝 I 摘要 III Abstract V 目錄 VI 圖目錄 XI 表目錄 XV 縮寫及符號說明 XVII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 液靜壓軸承之研究 3 1.2.2 液靜壓軸承動態行為之研究 4 1.2.3 被動與主動式壓力調節元件之研究 7 1.3 研究目的與本文架構 12 第二章 液靜壓平台基礎理論與實驗設備介紹 15 2.1 毛細管節流器之基本流量理論 15 2.1.1 毛細管節流器液靜壓單向墊理論 16 2.1.2 毛細管節流器液靜壓對向墊理論 19 2.2 液靜壓平台之運動方程式推導 22 2.3 主動式調控裝置 25 2.4 液壓調控系統之設備配置 29 2.4.1 單輸出液壓調節設備 30 2.4.2 多輸出液壓調節設備 33 2.4.3 控制系統配置 38 2.5 液壓線性平台之系統配置 41 第三章 液壓系統之控制理論與設計 44 3.1 內迴路與外迴路之雙重控制規劃 44 3.2 內迴路控制理論 48 3.3 外迴路控制理論 51 3.3.1 反模型前饋控制法(Model Inversion) 52 3.3.2 搭配積分行為的輸出狀態回授控制法 53 3.3.3 模型匹配法(Model-Matching Method) 55 第四章 單輸出液壓調節系統之系統識別與控制器設計及實驗 59 4.1 單輸出內迴路控制系統之參數設定 60 4.2 單輸出內迴路控制系統之系統識別 62 4.3 單輸出外迴路控制系統之參數設定 66 4.3.1 單輸出反模型前饋控制器設計 66 4.3.2 單輸出OFCIA控制器設計 68 5.3.3 單輸出模型匹配控制器設計 69 4.4 單輸出雙重迴路控制之實驗 70 4.4.1 單輸出內迴路控制之實驗結果 70 5.4.2 單輸出外迴路反模型前饋控制之實驗結果 73 4.4.3 單輸出外迴路OFCIA控制之實驗結果 75 4.4.4 單輸出外迴路模型匹配授控制之實驗結果 78 4.4.5單輸出控制實驗之結果比較 82 第五章 多輸出液壓調節系統之系統識別與控制器設計 85 5.1 多輸出內迴路控制系統之參數設定 86 5.2 多輸出內迴路控制系統之系統識別 87 5.3 多輸出外迴路控制系統之參數設定 91 5.3.1 多輸出之反模型前饋控制器設計 92 5.3.2 多輸出之OFCIA控制器設計 93 5.3.3 多輸出之模型匹配控制器設計 94 第六章 多輸出液壓調節系統之控制模擬與實驗 96 6.1 多輸出雙重迴路控制之模擬 96 6.1.1 多輸出反模型前饋控制之模擬結果 98 6.1.2 多輸出OFCIA控制之模擬結果 100 6.1.3 多輸出模型匹配控制之模擬結果 102 6.1.4多輸出雙重迴路控制之模擬結果與分析比較 103 6.2 多輸出雙重迴路控制之實驗 105 6.2.1 多輸出內迴路控制之實驗結果 105 6.2.2 多輸出外迴路反模型前饋控制之實驗結果 108 6.2.3 多輸出外迴路OFCIA控制之實驗結果 111 6.2.4 多輸出外迴路模型匹配控制之實驗結果 114 6.2.5 多輸出控制實驗之結果比較 117 6.3 連接液靜壓線性平台之實驗 119 第七章 結論與未來工作 122 7.1 結論 122 7.2 未來工作 123 Reference 125

    1. Girard, L.D., Application des surfaces glissantes. 1862.
    2. Karelitz, M.B., Oil pad bearings and driving gears of 200 inch telescope. Mechanical Engineering, 1938. 60: p. 541.
    3. Raimondi, A. and J. Boyd. An analysis of orifice and capillary compensated hydrostatic journal bearings ASME-ASCE Lub. in Conf. Baltimore USA. 1954.
    4. MoRI, H. and H. YABE, A theoretical investigation on hydrostatic bearing. Bulletin of JSME, 1963. 6(22): p. 354-363.
    5. Salem, F., M. El-Sherbiny, and N. El-Hefnawy, Optimum design of hydrostatic journal bearings. Part II: minimum power losses. J. Eng. Appl. Sci., 1983. 2: p. 171-184.
    6. Sternlicht, B., Elastic and damping properties of cylindrical journal bearings. Journal of Basic Engineering, 1959. 81: p. 101-108.
    7. Holmes, R., The vibration of a rigid shaft on short sleeve bearings. Journal of Mechanical Engineering Science, 1960. 2(4): p. 337-341.
    8. Lund, J.W. and B. Sternlicht, Rotor-bearing dynamics with emphasis on attenuation. Journal of Fluids Engineering, 1962. 84(4): p. 491-498.
    9. Lund, J.W., Calculation of stiffness and damping properties of gas bearings. Journal of Tribology, 1968. 90(4): p. 793-803.
    10. Bannister, R.H. A theoretical and experimental investigation illustrating the influence of non-linearity and misalignment on the eight oil film force coefficients. in IMechE Conf. on Vibrations in Rotating Machinery, Cambridge. 1976.
    11. Lund, J.W. and K.K. Thomsen, A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings. Topics in fluid film bearing and rotor bearing system design and optimization, 1978(1000118).
    12. Makdissy, J., A Theoretical and Experimental Study into the Dynamic Characteristics of a Hydrodynamic Oil Film Bearing. 1980, Cranfield Institute of Technology.
    13. Klit, P. and J.W. Lund, Calculation of the Dynamic Coefficients of a Journal Bearing, using a Variational Approach. Journal of tribology, 1986. 108(3): p. 421-424.
    14. Kato, T. and Y. Hori, A fast method for calculating dynamic coefficients of finite width journal bearings with quasi Reynolds boundary condition. Journal of tribology, 1988. 110(3): p. 387-393.
    15. Scharrer, J.K., Nonlinear Effects in a Plain Journal Bearing: Part 1—Analytical Study. Journal of Tribology, 1991. 113(3): p. 561-561.
    16. Someya, T., et al., Journal-bearing databook. 2013: Springer Science & Business Media.
    17. Slocum, A.H., Precision machine design. 1992: Society of Manufacturing Engineers.
    18. Bassani, R. and B. Piccigallo, Hydrostatic lubrication. 1992: Elsevier Science.
    19. Rippel, H.C., Design of hydrostatic bearings. Machine Design, 1963. 35(16): p. 108-117.
    20. Kotilainen, M.S.A., Design and manufacturing of modular self-compensating hydrostatic journal bearings. 2000: Massachusetts Institute of Technology, Department of Mechanical Engineering.
    21. Rowe, W.B., Hydrostatic, aerostatic, and hybrid Bearing design. 2012, USA: Elsevier.
    22. Mohsin, M. The use of controlled restrictors for compensating hydrostatic bearings. in Proceedings of the third international machine tool design research conference, University of Birmingham. 1963.
    23. Mayer Jr, J. and M. Shaw, Characteristics of an externally pressurized bearing having variable external flow restrictors. 1963.
    24. Rowe, W. and O. JP. Diaphragm valves for controlling opposed pad hydrostatic bearings. in IndIndustrial Lubrication and Tribology. 1970. MCB UNIV PRESS LTD 60/62 TOLLER LANE, BRADFORD BD8 9BY, W YORKSHIRE, ENGLAND.
    25. Rowe, W.B., Hydrostatic and Hybrid Bearing Design, in Hydrostatic and Hybrid Bearing Design, W.B. Rowe, Editor. 1983, Butterworth-Heinemann. p. iii.
    26. Morsi, S., Passively and actively controlled externally pressurized oil-film bearings. Journal of Lubrication Technology, 1972. 94(1): p. 56-63.
    27. Tully, N., Static and dynamic performance of an infinite stiffness hydrostatic thrust bearing. Trans. ASME, Ser. F, 1977. 99: p. 106.
    28. Pande, S. and S. Somasundaram, Analysis of a four-pocket hydrostatic journal bearing with a position-sensing variable restrictor. Wear, 1979. 54(2): p. 331-341.
    29. Osumi T., M.H., Ikeuchi K., Effects of stabilizer on initial response of self-controlled externally pressurized bearings. Trans. JSLE, 1985. 20: p. 651-657.
    30. Yoshimoto S., A.Y., Amari K., Static characteristics of hydrostatic journal bearing with a self-controlled restrictors employing floating disk. Trans. JSLE, 1990. 56: p. 3360-3367.
    31. Yoshimoto S., K.K., Step response characteristics of hydrostatic journal bearings with self-controlled restrictor employing floating disk. Trans. Int., 1999. 121: p. 315-320.
    32. Schönfeld, R., Regulator for adjusting the fluid flow in a hydrostatic or aerostatic device. 2001, Google Patents.
    33. Singh, N., et al., Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes. Tribology International, 2004. 37(1): p. 11-24.
    34. Shih, M.C. and J.S. Shie, Recess Design and Dynamic Control of an Active Compensating Hydrostatic Bearing. Journal of Advanced Mechanical Design Systems and Manufacturing, 2013. 7(4): p. 706-721.
    35. Song, Y., et al., Research on hydraulic pump displacement control using PI and feed-forward compensation. Advances in Mechanical Engineering, 2017. 9(12): p. 1687814017744087.
    36. J. Y. Tu, The Adaptive Control of Generalised Dynamically Substructured Systems. 2009, University of Bristol. p. 99-101.
    37. 鐘洪, 張., 液體靜壓動靜壓軸承設計使用手冊. 2007.
    38. Wei-Chih Lee, Characterization of the static and dynamic performance of a novel pressure-sense-compensating hydrostatic bearing, in Power Mechanical Engineering. 2012, National Tsing Hua University. p. 18-26.
    39. R. Bassani and B. Piccigallo, Hydraulic Lubrication. 1992, Netherlands: Elsevier.
    40. N. D.Vaughan and J. B.Gamble, The Modeling and Simulation of a Proportional Solenoid Valve. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 1996. 118(1): p. 5-120.
    41. R. Maiti, R. Saha, and J. Watton, The static and dynamic characteristics of a pressure relief valve with a proportional solenoid-controlled pilot stage. Proceedings of the Institution of Mechanical Engineers, 2002. 216(I2): p. 143-56.
    42. Shiu, S.-C., Analysis of Hydrostatic Bearing with Capillary Restrictors, Master's thesis, in Power Mechanical Engineering. 2019, National Tsing Hua University.
    43. Ziegler, J.G. and N.B. Nichols, Optimum settings for automatic controllers. trans. ASME, 1942. 64(11).
    44. Chen, C.-T., Linear System Theory and Design. 1999: Oxford University Press, Inc.

    QR CODE