研究生: |
陳界誠 |
---|---|
論文名稱: |
交流電電泳流之電極表面擴散層與電雙層之阻抗比研究 On the impedance ratio between the diffuse layer and the double layer in an ac electroosmosis |
指導教授: | 李雄略 |
口試委員: |
陳志臣
張錦裕 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 電泳流 、double layer 、電容分比 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討交流電電泳流。前人在此實驗的計算結果與實驗數據差異甚大,造成誤差的原因不明。本研究發現問題主要出在double layer內擴散層之電容分比。因為離子間的交互流動造成介電係數及黏滯係數皆非常數。經過一連串試驗,本研究認為應將介電係數及黏滯係數一併列入考量,並推導出另一參數,λ值。此新參數為電解液濃度、交流電電壓及頻率之函數。以此新參數數值模型計算出來之結果,與實驗數據及為吻合。並可利用此新參數應用於不同條件下的交流電電滲研究。本文以四相交流電電泳流為例子,利用此參數λ正確模擬出不同電極板配置下的流體速度與流場現象。
[1] Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices:microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech. 2004;36: 381-441.
[2] Ramos A, Morgan H, Green NG. AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 1999;217(9): 420-2.
[3] Green NG, Ramos A, Gonzalez A. Electric field induced fluid flow on microelectrodes: the effect of illumination. J Phys D: Appl. Phys 2000;33(1): 13-7.
[4] Dutta P, Beskok A. Analytical Solution of Combined Electroosmotic Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects. Anal Chem 2001;73: 1979-1986
[5] Green NG, Ramos A, Gonzalez A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 2000;61(4): 4011-8.
[6] Gonzalez A, Ramos A, Green NG. Fluid flow induces by nonuniform ac electric fields in electrolytes on microelectrodes. II.A linear double-layer analysis. Phys Rev E 2000;61(4): 4019-28.
[7] Green NG, Ramos A, Gronzale A. Fluid flow induces by nonuniform ac electric fields in electrolytes on microelectrodes. III.Observation of streamlines and numerical simulation. Phys Rev E 2000;66(8):206305.
[8] Ramos A, Gonza´lez A, Castellanos A, Green NG, Morgan H. Punping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 2003;53(8): 71-87.
[9] Yoon MS, Kim BJ, Sung HJ. Pumping and mixing in a microchannel using AC asymmetric electrode arrays. Int J Heat and Fluid Flow 2008;29 (2): 269-80.
[10] Urbanski JP, Thorsen T, Levitan JA, Bazant MZ. Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl Phys Lett 2006;89: 143508.
[11] Studer V, Pepin A, Chena Y, Ajdarib A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Anlyst 2004;123:944-9.
[12] Garcia-Sanchez P, Ramos A, Green NG, Morgan H. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE 2006;13: 670-6.
[13] Ramos A, Morgan H, Green NG, González A, Castellanos A. Pumping of liquids with traveling-wave electroosmosis. J Appl Phys. 2005;97: 084906.
[14] Yang H, Jiang H, Ao H, Ramos A, Garcia-Sanchez P. A symmetry electrode array for AC and traveling wave electroosmosis pumping. IEEE 2008.
[15] Yang H, Jiang H, Ramos A, Garcia-Sanchez P. AC electrokinetic pumping on symmetric electrode arrays. Microfluid Nanofluid 2009;7: 767-72.
[16] 吳政昆,交流電電泳流之電極表面擴散層電容比之研究,國立清華大學碩士論文,新竹,台灣,2011.
[17] Lee SL, Tzong R.Y. Artificial pressure for pressure-linked equation. Int J Heat Mass Transfer. 1992;35:2705-16
[18] Lee SL. A strongly implicit solver for 2-dimensional elliptic differential equations. Numer Heat Transfer. 1989;16:161-78