簡易檢索 / 詳目顯示

研究生: 區維晟
Au, Wei-Chen
論文名稱: 矽離子佈植砷化鎵的參雜濃度分佈研究
A study of dopant profile of Silicon implanted Gallium Arsenide
指導教授: 潘犀靈
Pan, Ci-Ling
張存續
Chang, Tsun-Hsu
口試委員: 楊承山
Yang, Chan-Shan
李晁逵
Lee, Chao-Kuei
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 159
中文關鍵詞: 離子佈植蒙地卡羅模擬二次離子質譜儀兆赫波時域量測快速熱退火製程高斯/梯形折射率分佈砷化鎵
外文關鍵詞: Ion implantation, Monte-Carlo simulation, secondary ion mass spectroscopy, Terahertz time domain spectroscopy, rapid thermal annealing, Gaussian and Trapezoid refractive index profile, GaAs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子佈植是重要的半導體製程。佈植後離子在半導體中的分佈‚是半導體元件物理的重要課題。要量測離子在材料中的分佈‚最常使用的是二次離子質譜儀(SIMS)。因為是直接量測準確率高‚但其主要缺點就是會破壞樣品表面。
    在本論文中‚我們探討利用兆赫波時域量測技術(THz-TDS)‚分析半導體中離子分佈的可行性‚並與蒙地卡羅模擬和二次離子質譜儀量測結果做比較。樣品是矽離子佈植進砷化鎵‚部分樣品經快速熱退火(RTA)處理。在已知矽離子佈植層分佈類似高斯或梯形分佈‚且分布於表面下約800nm內‚及離子佈植層折射係數(n) ~20的條件下‚我們顯示此方法的可行性。


    Ion implantation is an important semiconductor manufacturing process determination of the implanted ion distribution inside the substrate is an important topic in semiconductor physics and technology. To measure the distribution of ions inside material, secondary ion mass spectroscopy(SIMS) was widely used since it is a direct measurement and has high accuracy. However, it will damage the sample surface.
    In this thesis, we discuss the possibility of using Terahertz time domain spectroscopy(THz-TDS), to reconstruct distribution of ion implanted ions inside semiconductor, and compare the outcomes with Monte-Carlo simulation and SIMS data. The samples studied are Silicon ion- implanted Gallium Arsenide(GaAs), some of the samples have rapid thermal annealing(RTA) after implantation. We assume the distribution of Si ion implanted layers have been further proceeded by Gaussian or Trapezoid distribution, and Si ions are distributed within 800nm below the surface of substrate. The real refractive index(n) of Si- implanted layer is further assumed to be~20.This way, we showed that reconstruction of the ion implantation profile by THz-TDS is feasible.

    Table of Content 致謝 III List of figure VII List of Table XII 1 Introduction - 14 - 1-1 Ion implantation technology - 14 - 1-2 Technology to determine depth profile of dopants - 16 - 1-2-1 Destructive approaches - 16 - 1-2-2 Non-Destructive approaches - 17 - 1-3 Theoretical and Simulation studies of ion implantation - 20 - 1-3-1 Amorphous substrate - 20 - 1-3-2 Crystalline substrate - 22 - 1-4 Application of THz-TDS to depth profiling - 23 - 1-4-1 THz science and technology - 23 - 1-4-2 THz spectroscopy for material characterization - 25 - 1-4-3 Previous works on depth resolution of THz-TDS - 26 - 1-5 Motivation and objectives - 27 - 1-6 Organization of the thesis - 28 - 2 Theoretical formulism of ion implantation and Terahertz - 29 - 2-1 Simulation of ion implanted GaAs - 29 - 2-1-1 Binary collision approximation - 30 - 2-1-2 Ion implantation stopping model - 33 - 2-1-3 Diffusion model - 42 - 2-2 Terahertz time domain spectroscopy(THz-TDS) based on photoconductive antenna - 45 - 2-2-1 Generation of Terahertz pulses from biased photoconductive antenna - 45 - 2-2-2 Terahertz measurement with photoconductive antenna - 48 - 2-3 Optical and electrical characterization by THz-TDS - 50 - 2-3-1 Maxwell’s equation - 51 - 2-3-2 Extraction of material parameter in bulk samples - 60 - 2-3-3 Extraction of material parameter in thin films - 62 - 2-3-4 Thickness correction - 66 - 2-3-5 Complex reflection index - 68 - 2-3-6 Complex dielectric function - 70 - 2-3-7 Drude free-electron model - 72 - 2-3-8 Multilayer model - 76 - 3 Experimental detail - 83 - 3-1 Sample preparation - 83 - 3-1-1 Si ion implantation - 83 - 3-1-2 Rapid thermal anneal (RTA) - 85 - 3-2 Characterization method - 86 - 3-2-1 Secondary ion mass spectroscopy(SIMS) - 86 - 3-2-2 THz-TDS based on antenna - 87 - 3-2-3 Atomic force microscopy(AFM) measurement - 89 - 4 Si implanted GaAs implant only - 92 - 4-1 Distribution of Si ion into SI-GaAs Substrate-SIMS and simulation result - 92 - 4-2 Refractive index profile for Si ion into SI-GaAs Substrate - 95 - 4-2-1 Gaussian profile - 95 - 4-2-2 trapezoid profile - 97 - 4-3 THz-TDS reconstruction result - 99 - 4-3-1 Gaussian profile - 99 - 4-3-2 Trapezoid profile - 104 - 5 Distribution of Si ion into SI-GaAs substrate -Implant +RTA - 109 - 5-1 Distribution of Si ion into SI-GaAs Substrate-SIMS and simulation result - 109 - 5-2 Refractive index profile for Si ion into SI-GaAs Substrate - 119 - 5-2-1 Gaussian profile - 119 - 5-2-2 Trapezoid profile - 124 - 5-3 Ion concentration profile at fixed frequency - 129 - 5-3-1 Gaussian profile - 129 - 5-3-2 Trapezoid profile - 140 - 6 Conclusions and future works - 150 - 6-1 Conclusions - 150 - 6-2 Future works - 153 - Reference - 154 -

    [1] M. M. Pherson, "The adjustment of MOS transistor threshold voltage by ion implantation," Applied Physics Letters, vol. 18, no. 11, pp. 502-504, 1971.
    [2] C. Selvakumar and B. Hecht, "SiGe-channel n-MOSFET by germanium implantation," IEEE electron device letters, vol. 12, no. 8, pp. 444-446, 1991.
    [3] A. Furukawa, Y. Abe, S. Shimizu, T. Kuroi, Y. Tokuda, and M. Inuishi, "Channel engineering in sub-quarter-micron MOSFETs using nitrogen implantation for low voltage operation," in 1996 Symposium on VLSI Technology. Digest of Technical Papers, 1996: IEEE, pp. 62-63.
    [4] K. Matocha, T. P. Chow, and R. J. Gutmann, "High-voltage normally off GaN MOSFETs on sapphire substrates," IEEE Transactions on Electron Devices, vol. 52, no. 1, pp. 6-10, 2004.
    [5] F. Moscatelli, A. Poggi, S. Solmi, and R. Nipoti, "Nitrogen implantation to improve electron channel mobility in 4H-SiC MOSFET," IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 961-967, 2008.
    [6] E. Prati et al., "Single ion implantation of Ge donor impurity in silicon transistors," in 2015 Silicon Nanoelectronics Workshop (SNW), 2015: IEEE, pp. 1-2.
    [7] C. Keavney and M. Spitzer, "Indium phosphide solar cells made by ion implantation," Applied physics letters, vol. 52, no. 17, pp. 1439-1440, 1988.
    [8] H. Hieslmair, L. Mandrell, I. Latchford, M. Chun, J. Sullivan, and B. Adibi, "High throughput ion-implantation for silicon solar cells," Energy Procedia, vol. 27, pp. 122-128, 2012.
    [9] T. Michel et al., "Phosphorus emitter engineering by plasma-immersion ion implantation for c-Si solar cells," Solar Energy Materials and Solar Cells, vol. 133, pp. 194-200, 2015.
    [10] G. Yang, A. Ingenito, O. Isabella, and M. Zeman, "IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts," Solar Energy Materials and Solar Cells, vol. 158, pp. 84-90, 2016.
    [11] E. Hunt and J. Hampikian, "Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction," Acta materialia, vol. 47, no. 5, pp. 1497-1511, 1999.
    [12] F. Gonella, "Nanoparticle formation in silicate glasses by ion-beam-based methods," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 166, pp. 831-839, 2000.
    [13] W. Nie et al., "Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing," Nanoscale, vol. 10, no. 9, pp. 4228-4236, 2018.
    [14] M. I. Current, "The role of ion implantation in CMOS scaling: A tutorial review," in AIP Conference Proceedings, 2019, vol. 2160, no. 1: AIP Publishing LLC, p. 020001.
    [15] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
    [16] Y. Kudriavtsev et al., "Reconstruction of original indium distribution in InGaAs quantum wells from experimental SIMS depth profiles," Physica B: Condensed Matter, vol. 453, pp. 53-58, 2014.
    [17] D. L. Young et al., "Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells," Solar Energy Materials and Solar Cells, vol. 158, pp. 68-76, 2016.
    [18] P. Yunin, Y. N. Drozdov, M. Drozdov, O. Khrykin, and V. Shashkin, "Quantitative SIMS depth profiling of Al in AlGaN/AlN/GaN HEMT structures with nanometer‐thin layers," Surface and Interface Analysis, vol. 49, no. 2, pp. 117-121, 2017.
    [19] M. Ťapajna et al., "Determination of secondary-ions yield in SIMS depth profiling of Si, Mg, and C ions implanted gan epitaxial layers," in 2018 12th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), 2018: IEEE, pp. 1-4.
    [20] P. Boher et al., "Spectroscopic ellipsometry applied to the determination of an ion implantation depth profile," Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms - NUCL INSTRUM METH PHYS RES B, vol. 112, pp. 160-168, 05/01 1996, doi: 10.1016/0168-583X(95)01018-1.
    [21] C. Borschel and C. Ronning, "Ion beam irradiation of nanostructures–A 3D Monte Carlo simulation code," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 269, no. 19, pp. 2133-2138, 2011.
    [22] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, "SRIM–The stopping and range of ions in matter (2010)," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 268, no. 11-12, pp. 1818-1823, 2010.
    [23] M. Glaser et al., "Synthesis, morphological, and electro-optical characterizations of metal/semiconductor nanowire heterostructures," Nano letters, vol. 16, no. 6, pp. 3507-3513, 2016.
    [24] J.-P. Crocombette and C. Van Wambeke, "Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM," EPJ Nuclear Sciences & Technologies, vol. 5, p. 7, 2019.
    [25] T. Müller, K.-H. Heinig, and W. Möller, "Nanocrystal formation in Si implanted thin SiO2 layers under the influence of an absorbing interface," Materials Science and Engineering: B, vol. 101, no. 1-3, pp. 49-54, 2003.
    [26] M. Salvadori, F. d. S. Teixeira, L. G. Sgubin, M. Cattani, and I. Brown, "Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix," Applied surface science, vol. 310, pp. 158-163, 2014.
    [27] M. Reinelt, A. Allouche, M. Oberkofler, and C. Linsmeier, "Retention mechanisms and binding states of deuterium implanted into beryllium," New Journal of Physics, vol. 11, no. 4, p. 043023, 2009.
    [28] M. Warrier, U. Bhardwaj, H. Hemani, R. Schneider, A. Mutzke, and M. Valsakumar, "Statistical study of defects caused by primary knock-on atoms in fcc Cu and bcc W using molecular dynamics," Journal of Nuclear Materials, vol. 467, pp. 457-464, 2015.
    [29] R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, "On the use of SRIM for computing radiation damage exposure," Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, vol. 310, pp. 75-80, 2013.
    [30] K. Tabatabaie-Alavi and I. Smith, "Channeling, exponential tails, and analytical modeling of Si implants into GaAs," IEEE transactions on electron devices, vol. 37, no. 1, pp. 96-106, 1990.
    [31] M. Posselt, "Crystal-trim and its application to investigations on channeling effects during ion implantation," Radiation Effects and Defects in Solids, vol. 130, no. 1, pp. 87-119, 1994.
    [32] M. Karolewski, "Kalypso: a software package for molecular dynamics simulation of atomic collisions at surfaces," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 230, no. 1-4, pp. 402-405, 2005.
    [33] F. Xiong et al., "Dynamical resonant charge transfer of fast C−, O−, F− ions and water covered Si (111) surface," Vacuum, vol. 137, pp. 23-30, 2017.
    [34] R. Fukuda et al., "Lithographically engineered shallow nitrogen-vacancy centers in diamond for external nuclear spin sensing," New Journal of Physics, vol. 20, no. 8, p. 083029, 2018.
    [35] W. Zhou, H. Zhu, and J. A. Yarmoff, "Termination of single-crystal B i 2 S e 3 surfaces prepared by various methods," Physical Review B, vol. 94, no. 19, p. 195408, 2016.
    [36] S. Kar, "Terahertz technology—emerging trends and application viewpoints," in Terahertz Biomedical and Healthcare Technologies: Elsevier, 2020, pp. 89-111.
    [37] A. M. Abdul-Munaim, M. M. Aller, S. Preu, and D. G. Watson, "Discriminating gasoline fuel contamination in engine oil by terahertz time-domain spectroscopy," Tribology international, vol. 119, pp. 123-130, 2018.
    [38] C. Wu, X. Miao, and K. Zhao, "Identifying PM 2.5 samples collected in different environment by using terahertz time-domain spectroscopy," Frontiers of Optoelectronics, vol. 11, no. 3, pp. 256-260, 2018.
    [39] M. Naftaly, N. Vieweg, and A. Deninger, "Industrial Applications of Terahertz Sensing: State of Play," Sensors (Basel), vol. 19, no. 19, Sep 27 2019, doi: 10.3390/s19194203.
    [40] Y. Huang et al., "Terahertz surface emission from layered MoS2 crystal: competition between surface optical rectification and surface photocurrent surge," The Journal of Physical Chemistry C, vol. 122, no. 1, pp. 481-488, 2018.
    [41] B. S. Williams, "Terahertz quantum-cascade lasers," Nature photonics, vol. 1, no. 9, pp. 517-525, 2007.
    [42] Q. Wu, M. Litz, and X. C. Zhang, "Broadband detection capability of ZnTe electro‐optic field detectors," Applied Physics Letters, vol. 68, no. 21, pp. 2924-2926, 1996.
    [43] D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti: sapphire laser," Optics letters, vol. 16, no. 1, pp. 42-44, 1991.
    [44] M. Abo-Bakr et al., "Brilliant, coherent far-infrared (THz) synchrotron radiation," Physical Review Letters, vol. 90, no. 9, p. 094801, 2003.
    [45] B. Knyazev and V. Kubarev, "Wide-field imaging using a tunable terahertz free electron laser and a thermal image plate," Infrared physics & technology, vol. 52, no. 1, pp. 14-18, 2009.
    [46] C.-Y. Jen and C. Richter, "Doping profile recognition applied to silicon photovoltaic cells using terahertz time-domain spectroscopy," IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 5, pp. 560-567, 2014.
    [47] M. Lenz, C. Matheisen, M. Nagel, and J. Knoch, "Simultaneous measurement of doping concentration and carrier lifetime in silicon using terahertz time-domain transmission," Applied Physics Letters, vol. 110, no. 7, p. 072103, 2017.
    [48] C.-Y. Jen and C. Richter, "Sample Thickness Measurement with THz-TDS: Resolution and Implications," Journal of Infrared, vol. 35, p. 840, October 01, 2014 2014, doi: 10.1007/s10762-014-0093-9.
    [49] C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, and C.-L. Pan, "THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure," Opt. Express, vol. 20, no. S4, pp. A441-A451, 2012/07/02 2012, doi: 10.1364/OE.20.00A441.
    [50] Y. S. Yun et al., "InGaAs/GaAs quantum well intermixing using proton irradiation for non-absorbing mirror," Current Applied Physics, vol. 16, no. 9, pp. 1005-1008, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.cap.2016.05.023.
    [51] Z. Knittel, "Optics of thin films.(An optical multilayer theory)," Optics of thin films.(An optical multilayer theory, 1976.
    [52] A. Hössinger, "Simulation of ion implantation for ULSI technology," 2000.
    [53] J. Lindhard, M. Scharff, and H. E. Schiøtt, Range concepts and heavy ion ranges. Munksgaard Copenhagen, 1963.
    [54] H. Bethe, "The influence of screening on the creation and stopping of electrons," in Mathematical Proceedings of the Cambridge Philosophical Society, 1934, vol. 30, no. 4: Cambridge University Press, pp. 524-539.
    [55] O. S. Oen and M. T. Robinson, "Computer studies of the reflection of light ions from solids," Nuclear instruments and Methods, vol. 132, pp. 647-653, 1976.
    [56] G. Moliere, "Theorie der streuung schneller geladener teilchen ii mehrfach-und vielfachstreuung," Zeitschrift für Naturforschung A, vol. 3, no. 2, pp. 78-97, 1948.
    [57] E. W. Weisstein, "Cubic formula," https://mathworld.wolfram.com/, 2002.
    [58] W. H. Bragg and R. Kleeman, "XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 10, no. 57, pp. 318-340, 1905/09/01 1905, doi: 10.1080/14786440509463378.
    [59] P. Degen, "Ion implantation doping of compound semiconductors," physica status solidi (a), vol. 16, no. 1, pp. 9-42, 1973.
    [60] J. Hernández-Mangas, J. Arias, L. Bailón, M. Jaraız, and J. Barbolla, "Improved binary collision approximation ion implant simulators," Journal of applied physics, vol. 91, no. 2, pp. 658-667, 2002.
    [61] J. F. Ziegler and J. P. Biersack, "The stopping and range of ions in matter," in Treatise on heavy-ion science: Springer, 1985, pp. 93-129.
    [62] Y. Yang, M. P. Short, and J. Li, "Monte Carlo simulation of PKA distribution along nanowires under ion radiation," Nuclear Engineering and Design, vol. 340, pp. 300-307, 2018.
    [63] A. Paul and S. Divinski, Handbook of Solid State Diffusion: Volume 1: Diffusion Fundamentals and Techniques. Elsevier, 2017.
    [64] Y.-S. Lee, "Generation and detection of broadband terahertz pulses," in Principles of Terahertz Science and Technology: Springer, 2009, pp. 1-66.
    [65] X. Lin et al., "Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy," Nano Research, vol. 11, no. 12, pp. 6316-6324, 2018/12/01 2018, doi: 10.1007/s12274-018-2155-0.
    [66] A. G. Dumanli and T. Savin, "Recent advances in the biomimicry of structural colours," Chemical Society Reviews, 10.1039/C6CS00129G vol. 45, no. 24, pp. 6698-6724, 2016, doi: 10.1039/C6CS00129G.
    [67] D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, "Antireflective Nanoparticle Arrays Enhance the Efficiency of Silicon Solar Cells," Advanced Functional Materials, https://doi.org/10.1002/adfm.201000678 vol. 20, no. 18, pp. 3064-3075, 2010/09/23 2010, doi: https://doi.org/10.1002/adfm.201000678.
    [68] Y.-S. Lee, Principles of terahertz science and technology. Springer Science & Business Media, 2009.
    [69] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2019.
    [70] S. Abdellatif, R. Ghannam, and A. Khalil, "Simulating the dispersive behavior of semiconductors using the Lorentzian–Drude model for photovoltaic devices," Applied optics, vol. 53, no. 15, pp. 3294-3300, 2014.
    [71] H. Y. Stoyanov, I. L. Stefanov, G. G. Tsutsumanova, S. C. Russev, and G. B. Hadjichristov, "Depth-profiled characterization of complex refractive index of ion implanted optically transparent polymers using multilayer calculations and reflectance data," Vacuum, vol. 86, no. 12, pp. 1822-1827, 2012.
    [72] M. Sotoodeh, A. Khalid, and A. Rezazadeh, "Empirical low-field mobility model for III–V compounds applicable in device simulation codes," Journal of applied physics, vol. 87, no. 6, pp. 2890-2900, 2000.
    [73] J. Tandon, M. A. Nicolet, and F. Eisen, "Silicon implantation in GaAs," Applied Physics Letters, vol. 34, no. 2, pp. 165-167, 1979.
    [74] "Ion implantor datasheet." [Online]. Available: https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp.
    [75] Ion implanter varian e220 [Online] Available: https://caeonline.com/buy/ion-implanters-monitors/varian-e220/9209239
    [76] "Rapid thermal process." [Online]. Available: https://cnmm.site.nthu.edu.tw/var/file/188/1188/img/251/443616345.pdf.
    [77] "Secondary ion mass spectroscopy ". [Online]. Available: http://simslab.rice.edu/surface-analysis-lab/teaching-activities-resources/time-of-flight-secondary-ion-mass-spectrometry/.
    [78] Y. Kim, M. S. Kim, S. K. Min, and C. Lee, "Dislocation‐accelerated diffusion of Si in delta‐doped GaAs grown on silicon substrates by metalorganic chemical vapor deposition," Journal of applied physics, vol. 69, no. 3, pp. 1355-1358, 1991.
    [79] H. Ryssel, J. Lorenz, and K. Hoffmann, "Models for implantation into multilayer targets," Applied Physics A, vol. 41, 3, pp. 201-207, 1986.
    [80] A. Jiang, Y. Osamu, and L. Chen, "Multilayer optical thin film design with deep Q learning," Scientific Reports, vol. 10, no. 1, pp. 1-7, 2020.
    [81] I. Tyschenko, M. Voelskow, and A. Cherkov, "Effect of SiO2 surface conditions on the diffusion and interaction of co-implanted In and As atoms," Journal of Non-Crystalline Solids, vol. 553, p. 120514, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.jnoncrysol.2020.120514.

    QR CODE