研究生: |
莊霈于 Chuang, Pei-Yu |
---|---|
論文名稱: |
鈷-碳非晶質薄膜之磁阻傳輸特性與電子結構探討 Magnetoresistance Property and Electronic Structure in Amorphous a-C:Co Films |
指導教授: |
李志浩
Lee, Chih-Hao |
口試委員: |
林宏基
Lin, Hong-Ji 許華書 Hsu, Hua-Shu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 正磁阻 、塞曼效應 、同步輻射 |
外文關鍵詞: | Positive-Magnetoresistance, Zeeman effect, synchrotron radiation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非晶質碳膜(amorphous carbon, a-C),近年在自旋電子學的研究上被預期極具潛力。本論文主要針對a-C:Co薄膜的磁電傳輸性質進行系統化研究,我們發現在a-C:Co薄膜系統中具有異常正磁阻。而此類正磁阻的效應,可能與近來研究報導所顯示之新型巨大磁阻的傳輸機制有關。這些系統的磁阻效應與早期的自旋電子散射機制不同,其磁阻變化率甚至更高。因此被預期有很大的應用潛力。
本實驗利用射頻磁控濺鍍系統,以共濺鍍方式製作a-C:Co薄膜,將鈷金屬摻雜在非晶質碳基底的薄膜內,將薄膜成長在石英基板上;在室溫的量測環境下,觀察到a-C:Co薄膜在外加磁場0.3 (T)的正磁阻變化率(~10%),並隨著量測的外加偏壓變化,磁阻現象也有所對應。從I-V曲線關係圖觀察到a-C:Co薄膜擁有兩階段電阻,在電阻特性轉變處,其磁阻變化率為最大值。
為了解a-C:Co薄膜的正磁阻機制,我們藉由拉曼光譜(Raman)、X光反射率(XRR)、X光吸收光譜(XAS)、紫外光光電子能譜(UPS)、超導量子干涉儀(SQUID),量測a-C:Co薄膜的密度、電子結構與磁化率,由實驗結果顯示,鈷與碳兩種元素的外層電子軌域互相混成形成複合材料。因此在外加磁場下,鈷金屬之d軌域受塞曼效應影響,d軌域發生分裂,可能導致a-C:Co薄膜的費米能階產生扭曲,進而影響電子傳輸,所以在磁阻的量測我們觀察到正磁阻現象。
Recent studies of large magneto-resistance (MR) effect in several distinct mechanisms and systems have gained much attention because the MR ratio is comparable to, or even larger than, that of MR caused by a typical spin-dependent scattering mechanism discovered in magnetic multilayers. For examples, large positive MR induced by the space-charge effect has been achieved in metal-semiconductor hybrid devices. Besides, colossal MR related to switching the conducting channels between different layers has also been observed.
In this report, we study anomalous giant MR effect in amorphous a-C:Co films on the quartz substrate. These films, investigated in current-in-plane geometry, has a bias voltage dependent positive magneto-resistance (PMR), and at room temperature, the MR value reaches 10% under a relative low magnetic field H=0.3 (T) and bias voltage of 4V.
By using Raman spectrum、X-ray Reflectivity(XRR)、X-ray Absorption Spectrum(XAS)、Ultra-Violet Photoemission Spectrum(UPS) and Superconducting Quantum Interference Device(SQUID), we measure a-C:Co films the mass density、electron structure and magnetic properties to investigation of coupling the electro-transport. The result of Co and Carbon electron orbital to hybrid, and applied external magnetic field the Co d orbital will be split by Zeeman Effect. And then maybe distorted a-C:Co Fermi level to effect electro-transport.
[1]M.N. Baibich,J.M.Broto,A. Fert, Nguyen Van Dau,F. Petroff,P. Eitenne,G. Creuzet,A.Friederich,andJ.Chazelas,Phys.Rev.Lett.61,2472(1988).
[2]T. penny, M. W. Schafer, and J. B. Torrance, Phys. Rev. B 5, 3669 (1972).
[3]S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264,413(1994).
[4]ShintaroMiyanishi, MotojiYagura, Nobuaki Teraguchi, Kazuhiko Shirakawa, Keiichi Sakuno, Yoshiteru Murakami, Kunio Kojima, and Akira Takahashi, Appl.Phys.Lett. 91, 192104 (2007).
[5]H.Akinaga, M.Mizuguchi, K.One and M.Oshima, Appl. Phys. Lett. 76, 357(2000).
[6]D. D. Zhu, X. Zhang, and Q. Z. Xue, J. Appl. Phys. 95, 1906 (2004).
[7]P. Tian, X. Zhang, and Q. Z. Xue, Carbon 45, 1764 (2007).
[8]Xin Zhang, Xiaozhong Zhang, Caihua Wan, and Lihua Wu, Appl. Phys. Lett. 95,
022503 (2009).
[9]Q. Z. Xue, X. Zhang, and D. D. Zhu, Physica B 334, 216 (2003).
[10]Q. Z. Xue and X. Zhang, Phys. Lett. A 313, 461 (2003).
[11]W. L. Wang, K. J. Laio, and B. B. Wang, Diamond Relat. Mater.9, 1612(2000).
[12]Y. J. Fei, D. Yang, X. Wang, Q. B. Meng, X. Wang, Y. Y. Xiong, Y. X.Nie, and K. A. Feng, Diamond Relat. Mater.11, 49 (2002).
[13]P. Tian, X. Zhang, and Q. Z. Xue, Carbon 45, 1764 (2007).
[14]X. Zhang, X. Zhang, C. Wan, and L. Wu, Appl. Phys. Lett. 95, 022503 (2009).
[15]J. A. Colon Santana, R. Skomski,V. Singh, V. Palshin, A. Petukhov, Ya. B.Losovyj, A. Sokolov, P. A. Dowben, and I. Ketsman, J. Appl. Phys. 105,07A930 (2009).
[16] H. S. Hsu, P. Y.Chuang, J. H. Zhang, S. J. Sun, H. Chou, H. C. Su, C. H. Lee,
J. Chen, and J. C. A. Huang, Appl. Phys. Lett. 97, 032503 (2010).
[17]Somnath Bhattacharyya,S. J. Henley, D. Lock, N. P. Blanchard,and
S. R. P. Silva, Appl. Phys. Lett.89, 022113 (2006).
[18]A. C. Ferrari,A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan,L. M. Brown,
S. E. Rodil, B. Kleinsorge, and J.Robertson, Phys. Rev. B 62, 11089 (2000).
[19] Michael P. Delmo, Shinpei Yamamoto, Shinya Kasai, Teruo Ono & Kensuke Kobayashi, Nature, 426, 162 (2003).
[20宛德福、馬興隆,磁性物理學,電子工業出版社,1999
[21]張慶瑞,磁電阻與新穎磁性電子元件,台灣磁性技術學會,會訊第十二期,p.13
[22]張慶瑞,常磁電阻與異向磁電阻,台灣磁性技術學會,會訊第十九期,p.5,1999年1月
[23]Arthur Beiser 著;李俊霣譯,近代物理,臺北市 : 麥格羅.希爾 ,臺北縣 : 普林斯頓總代理,2003
[24]Peter Sigmund, Phys. Rev. 184, 383-416, 1969
[25]張旭廷,全氟五環素與鈷之介面結構及薄膜成長之探討,國立清華大學先進光源工科組,碩士論文,中華民國九十九年
[26]員鳳屏,龐磁阻錳氧化物薄膜之應變效應,國立中山大學物理研究所,碩士論文,中華民國九十六年
[27]陳家浩,從光電效應到光電子顯微術,中華民國物理學會,物理雙月刊,二十七卷五期,2005年10月
[28]L. G. Parratt, Phys. Rev. 95, 359, 1954
[29]莫定山,Raman 光譜原理及應用,中華民國九十五年九月二十七日
[30]A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).
[31] Y. Miyajima, A. A. D. T. Adikaari, S. J. Henley, J. M. Shannon, and S. R. P. Silva, Appl. Phys. Lett. 92, 152104 (2008).