研究生: |
殷裕勝 Yin, Yu-Sheng |
---|---|
論文名稱: |
漢朝古文物、南丹鐵隕石及微膠囊的特性與表面分析之研究 Characterization and Surface Analysis of the Antiques from Han Dynasty, Nan-Dan Iron Meteorite, and Microcapsules |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 青銅器 、二次離子質譜儀 、鐵隕石 、微膠囊 |
外文關鍵詞: | Bronze, SIMS, Iron Meteorites, Microcapsule |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Surface analysis with the capability of trace analysis and micro-area analysis has played an important role in scientific research. However, a diverse range of problems is difficult to dissolve by specific characterized techniques. Developing a suitable strategy containing of various analytical methods to study specific topic is useful in many fields. In this thesis, the ancient antiques from Han Dynasty (漢朝), Nan-Dan (南丹) iron meteorite, and polyelectrolyte microcapsules are investigated by modern analytical techniques, especially ToF-SIMS.
Han Dynasty is one of the most splendid times in Chinese culture. The manufacturing technology to art antiques in Han Dynasty is excellent in ancient China. Characterization of the objects though modern analytical techniques, such as XRF, ICP-MS and ToF-SIMS, is helpful to reveal the ancient wisdom and confirm the authenticity. The object was divided to two portions: (1) the lion consists of Cu/Zn alloy with a 20-30 贡m Ni layer for anticorrosion purpose; (2) the seal consists of a Pb base with a 225 贡m Cu layer and a 25汹贡m Ni layer on the topmost surface. Combination of ToF-SIMS and ICP-MS proved the gold exists on the lion surface and possibly deposited by ancient Chinese Liujin method. An identifying protocol for ancient antiques was established in this study for archaeology to discover the ancient technique and supply further information.
Nan-Dan iron meteorites, well known iron meteorites in the world, have been studied by various methods to identify the property, structure and composition. However, discovering the distribution of specific composition is difficulty due to the small size, wide concentration range, and unknown composition. In this study, the meteorite is investigated by SEM, ESCA and ToF-SIMS to acquire the morphology, chemical state and chemical ion images. Iron is distinguished to exist in three main types and the complex of iron binding with C, Si and Cl. Some nubbles with Cr shell were discovered by ion images. Both aggregations with Cu and Al/Si dominant textures display in the core area of these nubbles. This work contributes some fresh knowledge on Nan-Dan iron meteorites and demonstrates new application of ToF-SIMS.
Engineered polyelectrolyte multilayer (PEM) films of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) assembled on polyethylene terephthalate (PET) substrate as well as PEM microcapsules of PAH and PSS templated onto polystyrene latex were fabricated by layer-by-layer assembly and characterized by various analytical techniques. The characteristic ion intensities from the respective outermost layer obtained by ToF-SIMS accorded well with the layer composition. The S and C8H7SO3 ion intensities were higher in PSS layers; whereas Cl ion intensity was higher in PAH layers. The SEM image displayed morphology which involved electrostatic interactions during the formation of multilayer. AFM measurement showed the shell thickness of PEM microcapsules as 1.21 nm. ToF-SIMS total ion, S ion, and Cl ion images were useful to delineate the PEM microcapsules location and to indicate successful assembly. The results demonstrated for the first time the feasibility of label-free ToF-SIMS imaging of PEM microcapsules.
1. Ostrikov, K.; Levchenko, I.; Xu, S., Computational plasma nanoscience: Where plasma physics meets surface science. Computer Physics Communications 2007, 177, (1-2), 110-113.
2. Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surface Science 2002, 500, (1-3), 28-60.
3. Weldon, M. K.; Queeney, K. T.; Eng, J.; Raghavachari, K.; Chabal, Y. J., The surface science of semiconductor processing: gate oxides in the ever-shrinking transistor. Surface Science 2002, 500, (1-3), 859-878.
4. Van Hove, M. A., From surface science to nanotechnology. Catalysis Today 2006, 113, (3-4), 133-140.
5. Kasemo, B., Biological surface science. Surface Science 2002, 500, (1-3), 656-677.
6. Bowker, M., The 2007 Nobel Prize in Chemistry for surface chemistry: Understanding nanoscale phenomena at surfaces. Acs Nano 2007, 1, (4), 253-257.
7. Imbihl, R.; Ertl, G., Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews 1995, 95, (3), 697-733.
8. O'Connor, D. J. S., Brett A.; Smart, Roger S.C., Surface analysis methods in materials science 2nd ed.; Springer: 2003.
9. Duke, C. B., The birth and evolution of surface science: Child of the union of science and technology. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (7), 3858-3864.
10. Durrant, S. F., Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. Journal of Analytical Atomic Spectrometry 1999, 14, (9), 1385-1403.
11. Magee, R. G. W. F. A. S. C. W., Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis. Wiley-Interscience: 1989.
12. Adams, F.; Van Vaeck, L.; Barrett, R., Advanced analytical techniques: platform for nano materials science. Spectrochimica Acta Part B-Atomic Spectroscopy 2005, 60, (1), 13-26.
13. Stephan, T., TOF-SIMS in cosmochemistry. Planetary and Space Science 2001, 49, (9), 859-906.
14. Briggs, J. C. V. D., ToF-SIMS:Surface Analysis by Mass Spectrometry. IM Publications LLP: 2001.
15. Winograd, N., The magic of cluster SIMS. Analytical Chemistry 2005, 77, (7), 142a-149a.
16. Plog, C.; Gerhard, W., Secondary Ion Production by Latent Energy of Neutrally Emitted Particles. Surface Science 1985, 152, (Apr), 127-134.
17. Delcorte, A. Static Secondary Ion Mass Spectrometry of Thin Organic Layers. Universite catholique de Louvain, 1999.
18. Jones, E. A.; Lockyer, N. P.; Vickerman, J. C., Depth profiling brain tissue sections with a 40 keV C-60(+) primary ion beam. Analytical Chemistry 2008, 80, (6), 2125-2132.
19. McDonnell, L. A.; Heeren, R. M. A., Imaging mass spectrometry. Mass Spectrometry Reviews 2007, 26, (4), 606-643.
20. Senoner, M.; Unger, W. E. S., Lateral resolution of secondary ion mass spectrometry-results of an inter-laboratory comparison. Surface and Interface Analysis 2007, 39, (1), 16-25.
21. Lee, J. W.; Kim, K. J.; Kim, H. K.; Moon, D. W., Deconvolution of SIMS depth profiles of As multiple delta layers in silicon. Surface and Interface Analysis 2005, 37, (2), 176-180.
22. Chen, C. Y.; Ghule, A. V.; Chen, W. Y.; Wang, C. C.; Chiang, Y. S.; Ling, Y. C., Rapid identification of phthalates in blood bags and food packaging using ToF-SIMS. Applied Surface Science 2004, 231-2, 447-451.
23. Ghule, K.; Ghule, A. V.; Chen, B. J.; Ling, Y. C., Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 2006, 8, (12), 1034-1041.
24. Yin, Y. S.; Chen, B. J.; Ling, Y. C., ToF-SIMS study of official seals from Han Dynasty. Applied Surface Science 2008, 255, (4), 1534-1537.
25. Wagner, M. S., Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry. Analytical Chemistry 2005, 77, (3), 911-922.
26. Chen, B. J.; Lee, P. L.; Chen, W. Y.; Mai, F. D.; Ling, Y. C., Hair dye distribution in human hair by ToF-SIMS. Applied Surface Science 2006, 252, (19), 6786-6788.
27. Belu, A. M.; Graham, D. J.; Castner, D. G., Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 2003, 24, (21), 3635-3653.
28. Nygren, H.; Hagenhoff, B.; Malmberg, P.; Nilsson, M.; Richter, K., Bioimaging TOF-SIMS: High resolution 3D Imaging of single cells. Microscopy Research and Technique 2007, 70, (11), 969-974.
29. Chen, W. Y.; Ling, Y. C.; Chen, B. J.; Wang, C. C., Atomic distribution in quantum dots- A ToF-SIMS study. Applied Surface Science 2006, 252, (19), 7003-7005.
30. Jungnickel, H.; Jones, E. A.; Lockyer, N. P.; Oliver, S. G.; Stephens, G. M.; Vickerman, J. C., Application of TOF-SIMS with chemometrics to discriminate between four different yeast strains from the species Candida glabrata and Saccharomyces cerevisiae. Analytical Chemistry 2005, 77, (6), 1740-1745.
31. Lee, J. L. S.; Gilmore, I. S.; Seah, M. P., Quantification and methodology issues in multivariate analysis of ToF-SIMS data for mixed organic systems. Surface and Interface Analysis 2008, 40, (1), 1-14.
32. Borner, K.; Malmberg, P.; Mansson, J. E.; Nygren, H., Molecular imaging of lipids in cells and tissues. International Journal of Mass Spectrometry 2007, 260, (2-3), 128-136.
33. Belu, A. M.; Davies, M. C.; Newton, J. M.; Patel, N., TOF-SIMS characterization and imaging of controlled-release drug delivery systems. Analytical Chemistry 2000, 72, (22), 5625-5638.
34. Mas, S.; Perez, R.; Martinez-Pinna, R.; Egido, J.; Vivanco, F., Cluster TOF-SIMS imaging: A new light for in situ metabolomics? Proteomics 2008, 8, (18), 3735-3745.
35. Spoto, G., Secondary ion mass spectrometry in art and archaeology. Thermochimica Acta 2000, 365, (1-2), 157-166.
36. Dowsett, M.; Adriaens, A., Role of SIMS in cultural heritage studies. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2004, 226, (1-2), 38-52.
37. Compston, W.; Clement, S. W. J., The geological microprobe: The first 25 years of dating zircons. Applied Surface Science 2006, 252, (19), 7089-7095.
38. McPhail, D. S., Some applications of SIMS in conservation science, archaeometry and cosmochemistry. Applied Surface Science 2006, 252, (19), 7107-7112.
39. Hallett, K.; Thickett, D.; McPhail, D. S.; Chater, R. J., Application of SIMS to silver tarnish at the British Museum. Applied Surface Science 2003, 203, 789-792.
40. Mazel, V.; Richardin, P.; Debois, D.; Touboul, D.; Cotte, M.; Brunelle, A.; Walter, P.; Laprevote, O., Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. Analytical Chemistry 2007, 79, (24), 9253-9260.
41. Ito, M.; Nagasawa, H.; Yurimoto, H., Oxygen isotopic SIMS analysis in Allende CAI: Details of the very early thermal history of the solar system. Geochimica Et Cosmochimica Acta 2004, 68, (13), 2905-2923.
42. Guan, Y.; Huss, G. R.; Leshin, L. A., SIMS analyses of Mg, Cr, and Ni isotopes in primitive meteorites and short-lived radionuclides in the early solar system. Applied Surface Science 2004, 231-2, 899-902.
1. Michael D. Glascock; Robert J. Speakman, R. S. P.-F., Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation. American Chemical Society: 2007.
2. Jim Grant, S. G., Neil Fleming, The Archaeology Coursebook: An Introduction To Themes, Sites, Methods And Skills. Taylor & Francis Group: 2002; p 323.
3. Tschegg, C.; Hein, I.; Ntaflos, T., State of the art multi-analytical geoscientific approach to identify Cypriot Bichrome Wheelmade Ware reproduction in the Eastern Nile delta (Egypt). Journal of Archaeological Science 2008, 35, (5), 1134-1147.
4. Vandenabeele, P., Raman spectroscopy in art and archaeology. Journal of Raman Spectroscopy 2004, 35, (8-9), 607-609.
5. Resano, M.; Garcia-Ruiz, E.; Vanhaecke, F., Laser Ablation-Inductively Coupled Plasma Mass Spectrometry in Archaeometric Research. Mass Spectrometry Reviews 2010, 29, (1), 55-78.
6. Smith, G. D.; Clark, R. J. H., Raman microscopy in archaeological science. Journal of Archaeological Science 2004, 31, (8), 1137-1160.
7. Vandenabeele, P.; Edwards, H. G. M.; Moens, L., A decade of Raman spectroscopy in art and archaeology. Chemical Reviews 2007, 107, (3), 675-686.
8. Edwards, H. G. M.; Stern, B.; Villar, S. E. J.; David, A. R., Combined FT-Raman spectroscopic and mass spectrometric study of ancient Egyptian sarcophagal fragments. Analytical and Bioanalytical Chemistry 2007, 387, (3), 829-836.
9. Legodi, M. A.; de Waal, D., Raman spectroscopic study of ancient South African domestic clay pottery. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 2007, 66, (1), 135-142.
10. Frost, R. L.; Martens, W.; Kloprogge, J. T.; Williams, P. A., Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance. Journal of Raman Spectroscopy 2002, 33, (10), 801-806.
11. McCann, L. I.; Trentelman, K.; Possley, T.; Golding, B., Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy 1999, 30, (2), 121-132.
12. Janssens, K.; Vittiglio, G.; Deraedt, I.; Aerts, A.; Vekemans, B.; Vincze, L.; Wei, F.; Deryck, I.; Schalm, O.; Adams, F.; Rindby, A.; Knochel, A.; Simionovici, A.; Snigirev, A., Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrometry 2000, 29, (1), 73-91.
13. Mantler, M.; Schreiner, M., X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrometry 2000, 29, (1), 3-17.
14. Gianoncelli, A.; Kourousias, G., Limitations of portable XRF implementations in evaluating depth information: an archaeometric perspective. Applied Physics a-Materials Science & Processing 2007, 89, (4), 857-863.
15. Schreiner, M.; Melcher, M.; Uhlir, K., Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage. Analytical and Bioanalytical Chemistry 2007, 387, (3), 737-747.
16. Smit, Z.; Istenic, J.; Knific, T., Plating of archaeological metallic objects - studies by differential PIXE. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2008, 266, (10), 2329-2333.
17. Spoto, G.; Torrisi, A.; Contino, A., Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chemical Society Reviews 2000, 29, (6), 429-439.
18. Dowsett, M.; Adriaens, A., Role of SIMS in cultural heritage studies. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2004, 226, (1-2), 38-52.
19. Riciputi, L. R.; Elam, J. M.; Anovitz, L. M.; Cole, D. R., Obsidian diffusion dating by secondary ion mass spectrometry: A test using results from Mound-65, Chalco, Mexico. Journal of Archaeological Science 2002, 29, (10), 1055-1075.
20. Ding, X.; Jiang, S. Y.; Zhao, K. D.; Nakamura, E.; Kobayashi, K.; Ni, P.; Gu, L. X.; Jiang, Y. H., In-situ U-PbSIMS dating and trace element (EMPA) composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China. Mineralogy and Petrology 2006, 86, (1-2), 29-44.
21. Sodhi, R. N. S.; Mahaney, W. C.; Milner, M. W., ToF-SIMS applied to historical archaeology in the Alps. Applied Surface Science 2006, 252, (19), 7140-7143.
22. Fagan, B. M., In The Beginning: An Introduction to Archaeology. 8th ed.; Lindbriar Corporation: 1994.
23. R.E. Taylor, M. J. A., Chronometric Dating in Archeology. Springer: 1997.
24. D. R. Brothwell, A. M. P., Handbook of Archaeological Sciences. John Wiley & Sons Ltd: 2001.
25. Quarta, G.; D'elia, M.; Butalag, K.; Maruccio, L.; Demortier, G.; Calcagnile, L., An integrated accelerator mass spectrometry radiocarbon dating and ion beam analysis approach for the study of archaeological contexts. Applied Physics a-Materials Science & Processing 2006, 83, (4), 605-609.
26. Martini, M.; Sibilia, E., Radiation in archaeometry: archaeological dating. Radiation Physics and Chemistry 2001, 61, (3-6), 241-246.
27. Reibold, M.; Paufler, P.; Levin, A. A.; Kochmann, W.; Patzke, N.; Meyer, D. C., Materials - Carbon nanotubes in an ancient Damascus sabre. Nature 2006, 444, (7117), 286-286.
28. Walter, P.; Martinetto, P.; Tsoucaris, G.; Breniaux, R.; Lefebvre, M. A.; Richard, G.; Talabot, J.; Dooryhee, E., Making make-up in ancient Egypt. Nature 1999, 397, (6719), 483-484.
29. Walter, P.; Welcomme, E.; Hallegot, P.; Zaluzec, N. J.; Deeb, C.; Castaing, J.; Veyssiere, P.; Breniaux, R.; Leveque, J. L.; Tsoucaris, G., Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Letters 2006, 6, (10), 2215-2219.
30. Dungworth, D., Roman copper alloys: Analysis of artefacts from northern Britain. Journal of Archaeological Science 1997, 24, (10), 901-910.
31. Schreiner, M.; Woisetschlager, G.; Schmitz, I.; Wadsak, M., Characterisation of surface layers formed under natural environmental conditions on medieval stained glass and ancient copper alloys using SEM, SIMS and atomic force microscopy. Journal of Analytical Atomic Spectrometry 1999, 14, (3), 395-403.
32. Chen, K. L.; Rehren, T.; Mei, J. J.; Zhao, C. C., Special alloys from remote frontiers of the Shang Kingdom: scientific study of the Hanzhong bronzes from southwest Shaanxi, China. Journal of Archaeological Science 2009, 36, (10), 2108-2118.
33. Cheng, C. F.; Schwitter, C. M., Nickel in Ancient Bronzes. American Journal of Archaeology 1957, 61, (4), 351-&.
34. Lin, C. C.; Huang, C. M., Zinc-nickel alloy coatings electrodeposited by pulse current and their corrosion behavior. Jct Research 2006, 3, (2), 99-104.
1. Stephan, T., TOF-SIMS in cosmochemistry. Planetary and Space Science 2001, 49, (9), 859-906.
2. Jarosewich, E., Chemical-Analyses of Meteorites - a Compilation of Stony and Iron Meteorite Analyses. Meteoritics 1990, 25, (4), 323-337.
3. Rost, D.; Stephan, T.; Greshake, A.; Fritz, J.; Weber, I.; Jessberger, E. K.; Stoffler, D., A combined ToF-SIMS and EMP/SEM study of a three-phase symplectite in the Los Angeles basaltic shergottite. Meteoritics & Planetary Science 2009, 44, (8), 1225-1237.
4. Guan, Y.; Huss, G. R.; Leshin, L. A., SIMS analyses of Mg, Cr, and Ni isotopes in primitive meteorites and short-lived radionuclides in the early solar system. Applied Surface Science 2004, 231-2, 899-902.
5. Besmehn, A.; Hoppe, P., A NanoSIMS study of Si- and Ca-Ti-isotopic compositions of presolar silicon carbide grains from supernovae. Geochimica Et Cosmochimica Acta 2003, 67, (24), 4693-4703.
6. Mikouchi, T.; Yamada, I.; Miyamoto, M., Symplectic exsolution in olivine from the Nakhla martian meteorite. Meteoritics & Planetary Science 2000, 35, (5), 937-942.
7. Stephan, T.; Jessberger, E. K.; Heiss, C. H.; Rost, D., TOF-SIMS analysis of polycyclic aromatic hydrocarbons in Allan Hills 84001. Meteoritics & Planetary Science 2003, 38, (1), 109-116.
8. McKay, D. S.; Gibson, E. K.; ThomasKeprta, K. L.; Vali, H.; Romanek, C. S.; Clemett, S. J.; Chillier, X. D. F.; Maechling, C. R.; Zare, R. N., Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 1996, 273, (5277), 924-930.
9. Shaw, A. M., Astrochemistry: From Astronomy to Astrobiology. Wiley: 2006.
10. Treiman, A. H.; Gleason, J. D.; Bogard, D. D., The SNC meteorites are from Mars. Planetary and Space Science 2000, 48, (12-14), 1213-1230.
11. Eiler, J. M.; Valley, J. W.; Graham, C. M.; Fournelle, J., Two populations of carbonate in ALH84001: Geochemical evidence for discrimination and genesis. Geochimica Et Cosmochimica Acta 2002, 66, (7), 1285-1303.
12. Kehm, K.; Hauri, E. H.; Alexander, C. M. O.; Carlson, R. W., High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS. Geochimica Et Cosmochimica Acta 2003, 67, (15), 2879-2891.
1. Shchukin, D. G.; Mohwald, H., Self-repairing coatings containing active nanoreservoirs. Small 2007, 3, (6), 926-943.
2. Antipov, A. A.; Sukhorukov, G. B.; Leporatti, S.; Radtchenko, I. L.; Donath, E.; Mohwald, H., Polyelectrolyte multilayer capsule permeability control. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2002, 198, 535-541.
3. De Geest, B. G.; Dejugnat, C.; Sukhorukov, G. B.; Braeckmans, K.; De Smedt, S. C.; Demeester, J., Self-rupturing microcapsules. Advanced Materials 2005, 17, (19), 2357-+.
4. Sauer, M.; Streich, D.; Meier, W., pH-sensitive nanocontainers. Advanced Materials 2001, 13, (21), 1649-1651.
5. Ma, Y. J.; Dong, W. F.; Hempenius, M. A.; Mohwald, H.; Vancso, G. J., Redox-controlled molecular permeability of composite-wall microcapsules. Nature Materials 2006, 5, (9), 724-729.
6. Kohler, K.; Shchukin, D. G.; Mohwald, H.; Sukhorukov, G. B., Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. Journal of Physical Chemistry B 2005, 109, (39), 18250-18259.
7. Gaponik, N.; Radtchenko, I. L.; Sukhorukov, G. B.; Rogach, A. L., Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 2004, 20, (4), 1449-1452.
8. Angelatos, A. S.; Radt, B.; Caruso, F., Light-responsive polyelectrolyte/gold nanoparticle microcapsules. Journal of Physical Chemistry B 2005, 109, (7), 3071-3076.
9. Peyratout, C. S.; Dahne, L., Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie-International Edition 2004, 43, (29), 3762-3783.
10. Rivera Gil, P.; del Mercato, L. L.; del-Pino, P.; Munoz-Javier, A.; Parak, W. J., Nanoparticle-modified polyelectrolyte capsules. Nano Today 2008, 3, (3-4), 12-21.
11. Johnston, A. P. R.; Cortez, C.; Angelatos, A. S.; Caruso, F., Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science 2006, 11, (4), 203-209.
12. Leporatti, S.; Voigt, A.; Mitlohner, R.; Sukhorukov, G.; Donath, E.; Mohwald, H., Scanning force microscopy investigation of polyelectrolyte nano- and microcapsule wall texture. Langmuir 2000, 16, (9), 4059-4063.
13. Weng, L. T.; Chan, C. M., SSIMS analysis of organics, polymer blends and interfaces. Applied Surface Science 2006, 252, (19), 6570-6574.
14. Chen, B. J.; Yin, Y. S.; Ling, Y. C., ToF-SIMS study of chemical composition and formation of all-nanoparticle multilayer films. Applied Surface Science 2008, 255, (4), 981-983.
15. Chen, B. J.; Yin, Y. S.; Ling, Y. C., ToF-SIMS study of growth behavior in all-nanoparticle multilayer films using a novel indicator layer. Applied Surface Science 2008, 255, (4), 977-980.
16. Li, Z.; Rickman, R. D.; Verkhoturov, S. V.; Schweikert, E. A., Layer-by-layer characterization of ultrathin films with secondary ion mass spectrometry. Applied Surface Science 2004, 231-2, 328-331.
17. Ariga, K.; Hill, J. P.; Ji, Q. M., Biomaterials and Biofunctionality in Layered Macromolecular Assemblies. Macromolecular Bioscience 2008, 8, (11), 981-990.
18. Sukhorukov, G. B.; Rogach, A. L.; Garstka, M.; Springer, S.; Parak, W. J.; Munoz-Javier, A.; Kreft, O.; Skirtach, A. G.; Susha, A. S.; Ramaye, Y.; Palankar, R.; Winterhalter, M., Multifunctionalized polymer microcapsules: Novel tools for biological and pharmacological applications. Small 2007, 3, (6), 944-955.
19. Derveaux, S.; Stubbe, B. G.; Roelant, C.; Leblans, M.; De Geest, B. G.; Demeester, J.; De Smedt, S. C., Layer-by-layer coated digitally encoded microcarriers for quantification of proteins in serum and plasma. Analytical Chemistry 2008, 80, (1), 85-94.
20. Dejugnat, C.; Sukhorukov, G. B., PH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir 2004, 20, (17), 7265-7269.