簡易檢索 / 詳目顯示

研究生: 易湘一
Yi, Hsiang-Yi
論文名稱: 有機配位基對鋅磷酸鹽材料的結構與熱穩定性之影響與性質研究
Structural Diversities, and Functional Properties of Zinc Phosphates/Compounds with Various Organic Ligands
指導教授: 王素蘭
Wang, Sue-Lein
口試委員: 黃暄益
Huang, Hsuan-Yi
林嘉和
Lin, Chia-Her
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 磷酸鹽熱穩定性表面改質胺化嵌入
外文關鍵詞: zinc, phosphate, thermal stability, surface modification, amidation, intercalation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文以綠色化學的概念,在中溫水熱反應法中使用少量溶劑,分別用2-aminoterephthalic acid (NH2BDC)和3-Amino-2-naphthoic acid (NH2NC)做為有機配位基,以1,6 -diaminohexane (1,6 -dah) 做為有機模板,合成三個以鋅作為中心金屬的有機無機複合材料,皆為中性結構。化學式分別為[Zn3(H2O)2(PO4)(HPO4)(NH2BDC)0.5]‧0.5(1,6-dah)‧2H2O (A1)、Zn2(PO4)(NH2BDC) (A2)與Zn(NH2NC)2 (A3)。所有化合物都是藉由單晶X-ray繞射儀鑑定結構,並針對每個化合物的特性進行後續的性質量測並開發其應用性。
    A1與A2都使用NH2BDC做為有機配位基,不同之處是A1還多了1,6-dah做為有機模板,得到NH2BDC兩側的羧酸基都接到金屬上的三維中性骨架,而A2則是不具有有機模板的二維層狀中性結構,NH2BDC僅有單側的羧酸基配位到金屬上,二維層間的堆疊藉由層上未配位的羧酸基以強氫鍵連接,形成親水性作用力。A3則是改用NH2NC做為有機配位基的鋅化合物,形成一個類似A2的二維層狀結構,然而不同於A2的層間氫鍵,A3的層間苯環最接近的距離為3.6 Å,僅具有很弱的凡德瓦力,形成二維層間的疏水性作用力。
    A2的中性二維磷酸鹽結構有良好的熱穩定性,可承受高達440℃的高溫。相比之下,同為有機羧酸基配位在金屬上的鋅磷酸鹽材料NTHU-2、NTHU-8及NTHU-10的熱穩定性則不超過280℃。推測原因為四個:1. A2化合物具有中性骨架。2. 有機配位基NH2BDC單側的羧酸基和胺基都配位在金屬上。3. 層間的堆疊藉由層上未配位的羧酸基以強氫鍵連接。4. A2化合物的無機層中,鋅氧團簇並非單獨存在,而是透過共邊和共角的方式連接,形成無限延伸的二維層。
    針對後續性質應用,A2化合物是二維層狀結構,並具有裸露的羧酸基,本論文成功的利用此結構特色進行胺化和嵌入實驗都有不錯的成果和有趣的發現,胺化實驗將A2化合物表面改質為疏水材料,嵌入反應則可以改變A2化合物的螢光光色及強度,有潛力做為螢光材料。


    In this thesis, three organic-inorganic hybrid zinc compounds were synthesized via the hydrothermal method utilized by solvent reducing under a green chemistry concept . These three compounds used 2-aminoterephthalic acid (NH2BDC) and 3-Amino-2-naphthoic acid (NH2NC) as organic linkers to form one three-dimensional (3D) and two layered structures. The formulas are [Zn3(H2O)2(PO4)(HPO4)(NH2BDC)0.5]·0.5(1,6-dah)·2H2O (A1) (1,6-dah denoting for 1,6-diaminohexane), Zn2(PO4)(NH2BDC) (A2), and Zn(NH2NC)2 (A3), respectively, determined by single crystal X-ray diffraction.

    Both A1 and A2 comprise zinc phosphate (ZnPO) inorganic sheets with NH2BDC as an organic ligand. The ZnPO sheets of A1 are pillared by NH2BDC to form a 3D neutral framework templated with 1,6-dah and water. The ZnPO sheets of A2 are tri-dentated via the amine group and the carboxylate group on one side of NH2BDC and with the other side of carboxylic acid being pendant. The layers of A2 are stacked via hydrogen bonding in a cyclic dimer mode provided by the non-coordinating carboxylic acid groups of the adjacent layers. A3 is a zinc coordination polymer which contains ZnO4N2 octahedra interconnected by NH2NC to form a layered structure. The layers of A3 are packed by the Van der Waal force between benzene rings.

    As compared with zinc phosphates that incorporate organic aryl carboxylates prepared by our group previously which could sustain heating up to around 280 ºC, A2 has significant thermal stability up to 440 ºC confirmed by TGA and PXRD. The high thermal stability of A2 could be explained by four reasons:(1) the neutral framework of A2; (2) the tri-coordination of NH2BDC to three different zinc sites of the inorganic sheet; (3) the strong hydrogen bonding between the layers; (4) the sheets formed of zinc polyhedra without the phosphate group via edge and corner sharing, which are comparatively different from other zinc phosphates.

    With the exposed carboxylic acid group on the layer surface of A2, surface functionality has been successfully made to change its wettability from hydrophilic to hydrophobic by amidation. Whether the surface modification is a reversible process by thermal treatment or not depends on the amidation condition. In addition, A2 can also be transformed into blue-white fluorescent light material by intercalation of 4,4'-trimethylenedipyridine (TMDP). During the intercalation experiment, a zinc coordination polymer, Zn(NH2BDC)(TMDP) (A2-TMDP), was crystallized on the surface of A2. Those discoveries might bring a new prospective to the two dimensional inorganic-organic hybrid zinc phosphates.

    第一章 緒論 1-1背景簡介 5 1-2 論文研究目標與成果摘要 15 1-3 水熱合成法簡介 17 1-4 藥品一覽表 21 1-5 鑑定方法 22 1-6 參考資料 30 第二章 具高熱穩定性鋅磷酸鹽材料之合成與性質研究 2-1 簡介 34 2-2 實驗合成方法 37 2-3 化合物的鑑定及分析 40 2-4化合物的結構描述 53 2-5結果與討論 65 2-6 參考資料 99 第三章 總結 102 附錄: A1、A2、A3、A2TMDP的晶體數據列表

    1-6 參考資料
    [1] D. W. Breck, Zeolite Molecular Sieves,Wiley, New York, 1974.
    [2] J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227.
    [3] R. D. Miller, Science 1999, 286, 421.
    [4] J. M. Thomas, Angew. Chem. Int. Ed. 1999, 38, 3588.
    [5] S. M. Kuznickl, et al. Nature 2001, 412, 720.
    [6] M. E. Davis, Nature 2002, 417, 813.
    [7] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
    [8] P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc. 2003, 125, 1309.
    [9] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
    [10] R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N.R. Rao, Chem. Rev. 2008, 108, 3549.
    [11] A. F. Cronstedt, Akad handl. Stockholm, 1756, 17, 120.
    [12] Merlino. S. Miner. Mag. 1988, 52, 377
    [13] J. Bujdak, H. J. Slosiarikova, Therm. Analy. 1994, 41, 825
    [14] G. D. Yadav, M. S. M. M. Rahuman, Organ. Process Res. Devel. 2002, 6, 706
    [15] J. C. Grunlan, A. Grigorian, C. B. Hamilton, A. R. Mehrabi, J. Appl. Polymer Sci. 2004, 93, 1102
    [16] R. M. Barrer, J. Am. Chem. Soc. 1948, 127.
    [17] H. S. C. Deville, C. R. H. Seances, Acad. Sci. 1862, 54, 324.
    [18] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146.
    [19] M. E. Davis, Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature 1988, 331, 698.
    [20] (a) P. B. Moore, J. Shen, Nature 1983, 306, 356; (b) M. E. Davis, Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature 1988, 331, 698; (c) M. Estermann, L. B. McKusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320; (d) Q. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M. Chippindale, J. Chem. Soc. Chem. Commun.1992, 875; (e) Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao, Angew. Chem. Int. Ed. 2001, 40, 2166.
    [21] T. Takei, K. Sekijima, D. Wang, N. Kumada, N. Kinomura, Solid State Ionic 2004, 170, 111
    [22] V. Zima, L. Benes, K. Melanova, M. Vlcek, J. Solid State Chem. 2002, 163, 281
    [23] A. Espina, F. Menendez, Mater. Res. Bulletin 1998, 33, 763.
    [24] L. Peng, J. Yu, Y. Li, R. Xu, Chem. Mater. 2005, 17.
    [25] J. Plevert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi, M. O’Keeffe, J. Am. Chem. Soc. 2001, 123, 12706.
    [26] H.Li, M.Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
    [27] L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
    [28] S. S. Han, J. L. Mendoza-Cortés, W. A. Goddard III, Chem. Soc. Rev. 2009, 38, 1460.
    [29] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
    [30] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
    [31] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770.
    [32] C. H. Lin, S. L. Wang, K. L. Lii, J. Am. Chem. Soc. 2001, 123, 4649
    [33] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc. 2004, 126, 1320.
    [34] Y. T. Huang, Y. L. Lai, C. H. Lin, S. L. Wang, Green Chem. 2011, 13, 2000.
    [35] Y. H. Liao, Y. C. Jiang, S. L. Wang, J. Am. Chem. Soc. 2004, 127, 12794.
    [36] Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 9986.
    [37] Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350.
    [38] Y. C. Yang, S. L. Wang, J. Am. Chem. Soc. 2008, 130, 1146.
    [39] a) P. C. Jiang, Y. C. Yang, Y. C. Lai, Y. C. Liu, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 742 ; b)P. C. Jiang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010, 49, 4200.
    [40] a) S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6124 ; b) S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319.
    [41] P. C. Jhang, N. T. Chuang, S. L .Wang, Angew. Chem. Int. Ed. 2010, 49, 4200.
    [42] a) S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6124 ; b) S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319.
    [43] Y. C. Chang, S. L. Wang, J. Am. Chem. Soc. 2012, 134, 9848.
    [44] H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, S. L. Wang, Science 2013, 339, 811.
    [45] H. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965.
    [46] M. J. Sie, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2016, 138, 6719.
    [47] J. Li, L. Li, J. Liang, P. Chen, J. Yu, Y. Xu, R. Xu, Cryst. Growth &Des. 2008, 8 , 2318.
    [48] C. H. Lin, S. L. Wang, K. H. Lii, J. Am. Chem. Soc. 2001, 123, 4649.
    [49] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc.2004, 126, 1320.
    [50] Y. C. Liao, Y. C. Jiang, S. L. Wang, J. Am. Chem. Soc. 2005, 127,12794.
    [51] Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 9986.
    [52] Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350.
    [53] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四
    [54] APEX II software package; Bruker AXS, Madison, WI, 2008.
    [55] G. M. Sheldrick, SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
    [56] I. D. Brown, D. Altermann, Acta Crystallogr. 1985, B41, 244.
    [57] L. Spek, Acta Crystallogr. 1990, A46, 34.

    2-6 參考資料
    [1] E factor (environmental factor) = (sum of waste)(severity factor)/ (Wt. of product)(1-diluents),atom economy(原子經濟標) :(m.w.of .product x 100%)/ sum of (m.w.of reagent) (a) R. A. Sheldon, Chem. Ind. 1992, 903; (b) R. A. Sheldon, D.T. Sawyer, A.E. Martell (Eds.), Plenum, in Industrial Environmental Chemistry, New York, 1992, 99. (c) R. A. Sheldon, M.P. C. Weijnen, A. A.H. Drinkenburg (Eds.), Kluwer, Dordrecht, in Precision Process Technology, 1993, 125. (d) R. A. Sheldon, Chemtech, March 1994, 38. (e) R. A. Sheldon, J. Chem. Technol. Biotechnol. 1997, 68, 381. (f) R. A. Sheldon, J. Mol. Catal. A: Chemical 1996, 107, 75. (g) R. A. Sheldon, Pure Appl. Chem. 2000, 72, 1233.
    [2] P. B. Moore, J. Shen, Nature 1983, 306, 356.
    [3] M. E. Davis, Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature
    1988, 331, 698.
    [4] M. Estermann, L. B. McKusker, C. Baerlocher, A. Merrouche, H.
    Kessler, Nature 1991, 352, 320.
    [5] Q. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M.
    Chippindale, J. Chem. Soc. Comm. 1992, 875.
    [6] Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao,
    Angew. Chem. Int. Ed. 2001, 40, 2166.
    [7] J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew. Chem.
    Int. Ed. 2006, 45, 2546.
    [8] Y. Yang, N. Li, H. Song, H. Wang, W. Chen, S. Xiang, Chem. Mater. 2007, 19, 1889.
    [9] L. Zhao, J. Y. Li, P. Cheri, R. Xu, Chem. Mater. 2008, 20, 17.
    [10] M. B. Doran, A. J. Norquist, D. O’Hare, Chem. Comm. 2002, 2946.
    [11] I. Bull, P. S. Wheatley, P. Lightfoot, R. E. Morris, E. Sastre, P. A.
    Wright, Chem. Comm. 2002, 1180.
    [12] T. E. Altrecht-Schmitt, Angew. Chem. Int. Ed. 2005, 44, 4836.
    [13] Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao,
    Angew. Chem. Int. Ed. 2001, 40, 2166.
    [14] D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.
    [15] J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398,
    227.
    [16] R. D. Miller, Science 1999, 286, 421.
    [17] J. M. Thomas, Angew. Chem. Int. Ed. 1999, 38, 3588.
    [18] S. M. Kuznickl, et al. Nature, 2001, 412, 720.
    [19] M. E. Davis, Nature 2002, 417, 813.
    [20] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe,
    O. M. Yaghi, Science 2002, 295, 469.
    [21] P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K.
    Cheetham, J. Am. Chem. Soc. 2003, 125, 1309.
    [22] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43,
    2334.
    [23] R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N.R. Rao, Chem. Rev. 2008, 108, 3549.
    [24] S. Couck, J. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2009, 131, 6326.
    [25] Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre, G. Maurin, Chem. Commun. 2011, 47, 9603.
    [26] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. 2012, 124, 3420.
    [27] Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, RSC Adv. 2016, 6, 4289.
    [28] X. Zhang, J. Zhang, Q. Hu, Y. Cui, Y. Yang, Applied Surface Science 2015, 355, 814.
    [29] C. Kim, S. Diring, S. Furukawa, S. Kitagawa, Dalton Trans. 2015, 44, 15324.
    [30] (a)S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem. Int. Ed. 2014, 53, 6322. (b) S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem. Int. Ed. 2014, 53, 6322.
    [31] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
    [32] L. Wang, M. Yang, G. Li, Z. Shi, S. Feng, Journal of Solid State Chemistry 2006, 179, 156.
    [33] S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem. Int. Ed. 2014, 53, 6322.
    [34] S. A. Bourne, J. Lu, B. Moulton, M. J. Zaworotko, Chem. Comm. 2001, 861.

    QR CODE