簡易檢索 / 詳目顯示

研究生: 麥芳瑜
論文名稱: 以概似比檢定決定動態受限因子模型之維度
Determination of the Constraint Matrix in Dynamic Factor Models using Likelihood Ratio Test
指導教授: 徐南蓉
口試委員: 蔡恆修
張雅梅
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 48
中文關鍵詞: 受限動態因子模型EM 演算法階層集群分析概似比檢定狀態空間模型
外文關鍵詞: Constrained factor model, EM algorithm, hierarchical clustering, likelihood ratio test, state-space model
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討受限因子模型(Tsai and Tsay, 2010)之建模議題。此模型最初提出利用事先決定之群結構來達到降維之成效。首先,透過允許共同因子存在時間之相關性,將靜態受限因子模型延伸至動態受限因子模型。第二,我們採用EM演算法來求得參數之最大概似估計值。此外,我們提出概似比檢定以選取因子個數之最適值。最後,我們利用奇異值分解和集群分析等方法尋找受限矩陣之群結構,並且再次利用概似比檢定選取群個數之最適值。模擬研究顯示所提出之方法在簡化模式結構上頗具成效,此方法已成功地運用在財務相關之實例分析上。


    This thesis concerns about some modeling issues for a constrained factor model (Tsai and Tsay, 2010). This model was initially proposed for summarizing high-dimensional variables in a low-dimensional form with a pre-specified constrained structure. First, the static constrained factor model is extended to the dynamic one by incorporating temporal dependence in the common factors. Second, we employ the Expectation and Maximization algorithm to solve the maximum likelihood estimate for a dynamic constrained factor model. In addition, a sequential testing procedure based on likelihood ratio is proposed to determine a suitable dimension for common factors. Finally, we apply the singular value decomposition coupled with several clustering methods to determine the grouping structure among variables in the constraint matrix. Again, the number of clusters is determined via a sequential testing procedure based on likelihood ratio. The performance of the proposed methodology is demonstrated by a simulation study and an application with real data.

    Contents 1 Introduction 1 2 The Model 4 2.1 Dynamic Factor Model 4 2.2 Constrained Factor Model 5 3 Estimation 7 3.1 Likelihood Function 7 3.2 Solve MLE via EM Algorithm 8 4 Structure Exploration for Constraint Matrix H 12 4.1 PCA and SVD 12 4.2 Variable Clustering Analysis 15 5 Likelihood Ratio Test for Determining r and m 18 5.1 Test for the Number of Factors 19 5.2 Test for the Number of Clusters 20 6 Simulation Study 23 6.1 Setup 23 6.2 Performance of the MLE via EM 25 6.3 Performance of the LR Test 33 7 Application 40 8 Conclusion 46 References 47

    References
    [1]Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Third ed. Hoboken, New Jersey: Wiley.
    [2]Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology (Statistics Section), 3, 77–85.
    [3]Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.
    [4]Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276. 1585 citations.
    [5]Dempster, A. P., Laird N. M. and Rubin D. B. (1977). Maximum likelihood from incomplete data via em algorithm. Journal of the Royal Statistical Society Series B-Methodological 39(1) , 1-38.
    [6]Engle, R. F., and Watson M. W. (1981). A one-factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association, 76, 774–781.
    [7]Geweke, J. (1977). The dynamic factor analysis of economic time series, in latent variables in socio-economic models. D.J. Aigner and A.S. Goldberger, Amsterdam: North-Holland.
    [8]Jolliffe, I. (1986), Principal component analysis. Springer Verlag, New York.
    [9]Kaiser, H.F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141-151.
    [10]Krzanowski, W. J. and Lai Y. T. (1988). A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44(1), 23-34.
    [11]Lawley, D. N., and Maxwell, A. E. (1962). Factor analysis as a statistical method. The Statistician, 12(3), 209-229.
    [12]Sargent, T. J. and Sims C. A. (1977). Business cycle modeling without pretending to have too much a-priori economic theory. Working Papers, 55, Federal Reserve Bank of Minneapolis.
    [13]Stock, J. H. and Watson M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147-162.
    [14]Tsai, H. and Tsay R. S. (2010). Constrained factor models. Journal of the American Statistical Association, 105(492) , 1593-1605.
    [15]Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.
    [16]Watson, M. W., and Engle R. F. (1983). Alternative algorithms for the estimation of dynamic factor,mimic and varying coefficient regression models. Journal of Econometrics, 23, 385–400.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE