研究生: |
袁偉昌 Yuan Weichang |
---|---|
論文名稱: |
以層層自組裝法製備含二氧化鈦奈米顆粒與聚L-多巴的光催化多層膜 Photocatalytic Multilayer Films Based on TiO2 Nanoparticles and Poly(L-Dopa) Using Layer-by-Layer Self-Assembly |
指導教授: |
吳劍侯
Wu Chien Hou |
口試委員: |
董瑞安
Doong Ruey An 黃郁棻 Huang Yu Feng 柯富祥 Ko Fu Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 二氧化鈦 、層層自組裝 、薄膜 、光催化反應 、磺酸羅丹明B |
外文關鍵詞: | TiO2, layer-by-layer self-assembly, thin film, photocatalytic reaction, sulforhodamine B |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在溫和的反應條件和簡易的製備過程下,以玻璃為基材的層層自組裝二氧化鈦/L-多巴薄膜被成功製備,並且具有很好的透明度以及可控的粗糙度和厚度。此外,該薄膜也展現出了對染劑的有效降解。紫外可見分光光度計、場發射掃描式電子顯微鏡、傅里葉轉換紅外光譜和原子力顯微鏡被用於鑑定製備好的層層自組裝P25/聚L-多巴多層薄膜。鑑定結果顯示了薄膜厚度隨著層數增加呈現線性增長,表面結構具有起伏狀的孔洞性結構,奈米級別二氧化鈦清晰可見。該薄膜的光催化性質在紫外光(352 nm)下進行了測試,分別探討了每層浸泡的時間、鍍膜的層數和總的浸泡時間對光催化性質的影響。P25/聚L-多巴多層薄膜對磺酸羅丹明B (SRB)的光降解展現出與厚度的高度相關性和很好的重複利用性,通過銀離子溶液的浸泡可進一步增加其光催化效率。相同條件下,P25/聚L-多巴多層膜與P25/聚丙烯酸(PAA)多層膜具有近似光催化效率。此外,本文也探討了不同的二氧化鈦粒子(粒徑和表面電位)對層層自組裝薄膜製備和光催化性質的影響。
Abstract
Layer-by-layer (LbL) self-assembly TiO2/Poly(L-Dopa) (PDopa) thin films on soda lime glass slides with good transparency, controlled roughness and thickness have been successfully prepared under mild conditions and simple process. The obtained LbL P25/PDopa multilayer thin films were characterized by UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The characterization revealed the linear growth of nanoscale thickness, porous surface morphology and nanosized NPs. Photocatalytic activities were tested under UV (352 nm) irradiation. The effects of layer deposition time, number of bilayers and total deposition time were studied and compared. LbL P25/PDopa multilayer thin films demonstrated a thickness-dependent photocatalytic performance with excellent reusability towards the degradation of Sulforhodamine B (SRB). The photocatalytic performance can be further enhanced by simple treatment with Ag+. The LbL P25/PDopa multilayer thin films had similar photocatalytic performance with LbL P25/PAA multilayer thin films. The influence of using TiO2 NPs with different particle size and surface zeta potential has also been studied.
References
Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: a Comparative Overview. RSC Adv. 2014, 4, 37003–37026.
Ariga, K.; Hill, J. P.; Ji, Q. Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.
Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891−2959.
Chen, X.; Zhang, J.; Zhai, H.; Hu, Z. Determination of Levodopa by Capillary Zone Electrophoresis Using an Acidic Phosphate Buffer and Its Application in the Analysis of Beans. Food Chem. 2005, 92, 381–386.
Choi, G. H.; Rhee, D. K.; Park, A. R.; Oh, M. J. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Appl. Mater. Interfaces 2016, 8, 3250−3257.
Choy, K. L. Chemical Vapour Deposition of Coatings. Prog. Mater Sci. 2002, 48, 57–170.
Decher, G. Fuzzy Nanoassemblies:Toward Layered PolymericMulticomposites. Science 1997, 277, 1232–1237.
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146.
Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the Structure of Poly(Dopamine). Langmuir 2012, 28, 6428–6435.
Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of Methylene Blue by a High-Efficiency Adsorbent (Polydopamine Microspheres): Kinetics, Isotherm, Thermodynamics and Mechanism Analysis. Chem. Eng. J. 2015, 259, 53–61.
Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. J. Nanopart. Res. 2003, 5, 577–587.
Gupta, S. M.; Tripathi, M. A Review of TiO2. Chin. Sci. Bull. 2011, 56, 1639–1657.
He, Q.; Cui, Y.; Ai, S.; Tian, Y.; Li, J. Self-Assembly of Composite Nanotubes and Their Applications. Curr. Opin. Colloid Interface Sci. 2009, 14, 115–125.
Hendren, C. O.; Mesnard, X.; Dröge, J. Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45, 2562–2569.
Herrmann, J. M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129.
Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters Under UV−Irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.
Hojjati, B.; Sui, R.; Charpentier, P. A. Synthesis of TiO2/PAA Nanocomposite by RAFT Polymerization. Polymer 2007, 48, 5850–5858.
Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22, 4711–4717.
Kamegawa, T.; Seto, H.; Matsuura, S.; Yamashita, H. Preparation of Hydroxynaphthalene-Modified TiO2 via Formation of Surface Complexes and Their Applications in the Photocatalytic Reduction of Nitrobenzene Under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2012, 4, 6635–6639.
Keeney, M.; Jiang, X. Y.; Yamane, M.; Lee, M.; Goodman, S.; Yang, F. Nanocoating for Biomolecule Delivery Using Layer-by-Layer Self-Assembly. J. Mater. Chem. B 2015, 3, 8757–8770.
Kim, J.-H.; Shiratori, S. Characterization of TiO2/Polyelectrolyte Thin Film Fabricated by a Layer-by-Layer Self-Assembly Method. Jpn. J. Appl. Phys. 2005, 44, 7588–7592.
Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal., B 2004, 49, 1–14.
Kumbhar, A.; Chumanov, G. Synthesis of Iron(III)-Doped Titania Nanoparticles and Its Application for Photodegradation of Sulforhodamine-B Pollutant. J. Nanopart. Res. 2005, 7, 489–498.
Lee, D.; Rubner, M. F.; Cohen, R. E. All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6, 2305–2312.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430.
Li, H.; Duan, X.; Liu, G.; Liu, X. Photochemical Synthesis and Characterization of Ag/TiO2 Nanotube Composites. J Mater. Sci. 2008, 43, 1669–1676.
Liu, G.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation. Environ. Sci. Technol. 2000, 34, 3982–3990.
Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of Single-Crystalline TiO2 Nanotubes. Chem. Mater. 2002, 14, 1391–1397.
Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115.
Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A. One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir 2000, 16, 2731–2735.
Prinz, E. M.; Szamocki, R.; Nica, V. Synthesis and Characterization of Layer-by-Layer Composition of Nanoparticles Coated with Doxorubicin for Drug Delivery Applications. Z Phys. Chem. 2013, 227, 121–131.
Priya, D. N.; Modak, J. M.; Raichur, A. M. LbL Fabricated Poly (Styrene Sulfonate)/TiO2 Multilayer Thin Films for Environmental Applications. ACS Appl. Mater. Interfaces 2009, 1, 2684–2693.
Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface Restructuring of Nanoparticles: an Efficient Route for Ligand−Metal Oxide Crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.
Robichaud, C. O.; Uyar, A. E.; Darby, M. R. Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Environ. Sci. Technol. 2009, 43, 4227–4233.
Rongé, J.; Bets, J.; Pattanaik, S.; Bosserez, T.; Borellini, S. Tailoring Preparation, Structure and Photocatalytic Activity of Layer-by-Layer Films for Degradation of Different Target Molecules. Catal. Today 2015, 246, 28–34.
Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L. Chemical Properties of Catechols and Their Molecular Modes of Toxic Action in Cells, From Microorganisms to Mammals. Environ. Microbiol. 2001, 3, 81–91.
Shimomura, H.; Gemici, Z.; Cohen, R. E.; Rubner, M. F. Layer-by-Layer-Assembled High-Performance Broadband Antireflection Coatings. ACS Appl. Mater. Interfaces 2010, 2, 813–820.
Tachan, Z.; Hod, I.; Zaban, A. The TiO2-Catechol Complex: Coupling Type II Sensitization with Efficient Catalysis of Water Oxidation. Adv. Energy Mater. 2013, 4, 1301249.
Tang, L.; Livi, K. J. T.; Chen, K. L. Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in SituTo Mitigate Biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65.
Vecchia, Della, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M. Building‐Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin‐Type Platform Tunable Through a Quinone Control Point. Adv. Funct. Mater. 2013, 23, 1331–1340.
Waite, J. H.; Tanzer, M. L. Polyphenolic Substance of Mytilus Edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981, 212, 1038–1040.
Wang, D.; Bierwagen, G. P. Sol–Gel Coatings on Metals for Corrosion Protection. Prog. Org. Coat. 2009, 64, 327–338.
Wu, C.-Y.; Lee, Y.-L.; Lo, Y.-S.; Lin, C.-J.; Wu, C.-H. Thickness-Dependent Photocatalytic Performance of Nanocrystalline TiO2 Thin Films Prepared by Sol–Gel Spin Coating. Appl. Surf. Sci. 2013, 280, 737–744.
Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H. Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core–Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal. ACS Appl. Mater. Interfaces 2014, 6, 8845–8852.
Yang, Z.; Zhang, X.; Cui, J. Self-Assembly of Bioinspired Catecholic Cyclodextrin TiO2 Heterosupramolecule with High Adsorption Capacity and Efficient Visible-Light Photoactivity. Appl. Catal., B 2014, 148-149, 243–249.
Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes. Macromolecules 1998.
Yu, L.; Liu, X.; Yuan, W.; Brown, L. J.; Wang, D. Confined Flocculation of Ionic Pollutants by Poly(L-Dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. Langmuir 2015, 31, 6351–6366.
Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Crystalline Nanosized Titania in Reverse Micelles at Room Temperature. J. Mater. Chem. 2002a, 12, 3677–3680.
Zhang, G.; Choi, W. A Low-Cost Sensitizer Based on a Phenolic Resin for Charge-Transfer Type Photocatalysts Working Under Visible Light. Chem. Commun. 2012, 48, 10621–10623.
Zhang, Q.; Gao, L. Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights From Rutile TiO2. Langmuir 2003, 19, 967–971.
Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires. Chem. Phys. Lett. 2002b, 365, 300–304.
References
Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: a Comparative Overview. RSC Adv. 2014, 4, 37003–37026.
Ariga, K.; Hill, J. P.; Ji, Q. Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.
Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891−2959.
Chen, X.; Zhang, J.; Zhai, H.; Hu, Z. Determination of Levodopa by Capillary Zone Electrophoresis Using an Acidic Phosphate Buffer and Its Application in the Analysis of Beans. Food Chem. 2005, 92, 381–386.
Choi, G. H.; Rhee, D. K.; Park, A. R.; Oh, M. J. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Appl. Mater. Interfaces 2016, 8, 3250−3257.
Choy, K. L. Chemical Vapour Deposition of Coatings. Prog. Mater Sci. 2002, 48, 57–170.
Decher, G. Fuzzy Nanoassemblies:Toward Layered PolymericMulticomposites. Science 1997, 277, 1232–1237.
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146.
Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the Structure of Poly(Dopamine). Langmuir 2012, 28, 6428–6435.
Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of Methylene Blue by a High-Efficiency Adsorbent (Polydopamine Microspheres): Kinetics, Isotherm, Thermodynamics and Mechanism Analysis. Chem. Eng. J. 2015, 259, 53–61.
Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. J. Nanopart. Res. 2003, 5, 577–587.
Gupta, S. M.; Tripathi, M. A Review of TiO2. Chin. Sci. Bull. 2011, 56, 1639–1657.
He, Q.; Cui, Y.; Ai, S.; Tian, Y.; Li, J. Self-Assembly of Composite Nanotubes and Their Applications. Curr. Opin. Colloid Interface Sci. 2009, 14, 115–125.
Hendren, C. O.; Mesnard, X.; Dröge, J. Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45, 2562–2569.
Herrmann, J. M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129.
Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters Under UV−Irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.
Hojjati, B.; Sui, R.; Charpentier, P. A. Synthesis of TiO2/PAA Nanocomposite by RAFT Polymerization. Polymer 2007, 48, 5850–5858.
Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22, 4711–4717.
Kamegawa, T.; Seto, H.; Matsuura, S.; Yamashita, H. Preparation of Hydroxynaphthalene-Modified TiO2 via Formation of Surface Complexes and Their Applications in the Photocatalytic Reduction of Nitrobenzene Under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2012, 4, 6635–6639.
Keeney, M.; Jiang, X. Y.; Yamane, M.; Lee, M.; Goodman, S.; Yang, F. Nanocoating for Biomolecule Delivery Using Layer-by-Layer Self-Assembly. J. Mater. Chem. B 2015, 3, 8757–8770.
Kim, J.-H.; Shiratori, S. Characterization of TiO2/Polyelectrolyte Thin Film Fabricated by a Layer-by-Layer Self-Assembly Method. Jpn. J. Appl. Phys. 2005, 44, 7588–7592.
Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal., B 2004, 49, 1–14.
Kumbhar, A.; Chumanov, G. Synthesis of Iron(III)-Doped Titania Nanoparticles and Its Application for Photodegradation of Sulforhodamine-B Pollutant. J. Nanopart. Res. 2005, 7, 489–498.
Lee, D.; Rubner, M. F.; Cohen, R. E. All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6, 2305–2312.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430.
Li, H.; Duan, X.; Liu, G.; Liu, X. Photochemical Synthesis and Characterization of Ag/TiO2 Nanotube Composites. J Mater. Sci. 2008, 43, 1669–1676.
Liu, G.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation. Environ. Sci. Technol. 2000, 34, 3982–3990.
Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of Single-Crystalline TiO2 Nanotubes. Chem. Mater. 2002, 14, 1391–1397.
Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115.
Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A. One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir 2000, 16, 2731–2735.
Prinz, E. M.; Szamocki, R.; Nica, V. Synthesis and Characterization of Layer-by-Layer Composition of Nanoparticles Coated with Doxorubicin for Drug Delivery Applications. Z Phys. Chem. 2013, 227, 121–131.
Priya, D. N.; Modak, J. M.; Raichur, A. M. LbL Fabricated Poly (Styrene Sulfonate)/TiO2 Multilayer Thin Films for Environmental Applications. ACS Appl. Mater. Interfaces 2009, 1, 2684–2693.
Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface Restructuring of Nanoparticles: an Efficient Route for Ligand−Metal Oxide Crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.
Robichaud, C. O.; Uyar, A. E.; Darby, M. R. Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Environ. Sci. Technol. 2009, 43, 4227–4233.
Rongé, J.; Bets, J.; Pattanaik, S.; Bosserez, T.; Borellini, S. Tailoring Preparation, Structure and Photocatalytic Activity of Layer-by-Layer Films for Degradation of Different Target Molecules. Catal. Today 2015, 246, 28–34.
Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L. Chemical Properties of Catechols and Their Molecular Modes of Toxic Action in Cells, From Microorganisms to Mammals. Environ. Microbiol. 2001, 3, 81–91.
Shimomura, H.; Gemici, Z.; Cohen, R. E.; Rubner, M. F. Layer-by-Layer-Assembled High-Performance Broadband Antireflection Coatings. ACS Appl. Mater. Interfaces 2010, 2, 813–820.
Tachan, Z.; Hod, I.; Zaban, A. The TiO2-Catechol Complex: Coupling Type II Sensitization with Efficient Catalysis of Water Oxidation. Adv. Energy Mater. 2013, 4, 1301249.
Tang, L.; Livi, K. J. T.; Chen, K. L. Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in SituTo Mitigate Biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65.
Vecchia, Della, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M. Building‐Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin‐Type Platform Tunable Through a Quinone Control Point. Adv. Funct. Mater. 2013, 23, 1331–1340.
Waite, J. H.; Tanzer, M. L. Polyphenolic Substance of Mytilus Edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981, 212, 1038–1040.
Wang, D.; Bierwagen, G. P. Sol–Gel Coatings on Metals for Corrosion Protection. Prog. Org. Coat. 2009, 64, 327–338.
Wu, C.-Y.; Lee, Y.-L.; Lo, Y.-S.; Lin, C.-J.; Wu, C.-H. Thickness-Dependent Photocatalytic Performance of Nanocrystalline TiO2 Thin Films Prepared by Sol–Gel Spin Coating. Appl. Surf. Sci. 2013, 280, 737–744.
Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H. Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core–Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal. ACS Appl. Mater. Interfaces 2014, 6, 8845–8852.
Yang, Z.; Zhang, X.; Cui, J. Self-Assembly of Bioinspired Catecholic Cyclodextrin TiO2 Heterosupramolecule with High Adsorption Capacity and Efficient Visible-Light Photoactivity. Appl. Catal., B 2014, 148-149, 243–249.
Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes. Macromolecules 1998.
Yu, L.; Liu, X.; Yuan, W.; Brown, L. J.; Wang, D. Confined Flocculation of Ionic Pollutants by Poly(L-Dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. Langmuir 2015, 31, 6351–6366.
Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Crystalline Nanosized Titania in Reverse Micelles at Room Temperature. J. Mater. Chem. 2002a, 12, 3677–3680.
Zhang, G.; Choi, W. A Low-Cost Sensitizer Based on a Phenolic Resin for Charge-Transfer Type Photocatalysts Working Under Visible Light. Chem. Commun. 2012, 48, 10621–10623.
Zhang, Q.; Gao, L. Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights From Rutile TiO2. Langmuir 2003, 19, 967–971.
Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires. Chem. Phys. Lett. 2002b, 365, 300–304.