簡易檢索 / 詳目顯示

研究生: 雷皓哲
Lei, Hao-Zhe
論文名稱: 深度有限的量子近似計數算法
Depth-Limited Quantum Approximate Counting Algorithm
指導教授: 林瀚仚
Lin, Han-Hsuan
口試委員: 韓永楷
Hon, Wing-Kai
賴青沂
Lai, Ching-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 32
中文關鍵詞: 量子搜尋量子近似計數電路深度限制
外文關鍵詞: QauntumSearch, QauntumApproximateCounting, Depth-Limited, GroverSearch
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們給出了一個深度有限的量子近似計數演算法。該演算法接收輸入 $\epsilon, \delta, T_{max}$,並輸出 $\Tilde{K}$,即標記項數量的估計值,滿足 $\epsilon K \geq |\Tilde{K} - K|$,其中 $K$ 是標記項的數量,失敗概率小於 $\delta$,且電路深度小於 $T_{max}$。當 $T_{max} \leq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ 時,我們的演算法使用 $O\left( \frac{1}{T_{max} \epsilon^2} \frac{N}{K}\right)$ 查詢;當 $T_{max} \geq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ 時,使用 $O\left(\frac{1}{\epsilon}\sqrt{\frac{N}{K}}\right)$ 查詢。

    我們還給出了深度限制的近似計數的匹配查詢下界 $ \Omega \left( \frac{N}{T_{max} \epsilon^2 K} \right)$,在以下限制條件下:演算法僅運行到最大深度 $T_{max}$ 的 Grover 算子,且 $T_{max}$ 滿足 $(2T_{max}+1) \theta \leq
    i/2$。


    We give an depth-limited quantum approximate counting algorithm. The algorithm takes input $\epsilon,\delta$, $T_{max}$ and outputs $\Tilde{K}$, an estimate of the number of marked items, satisfying $\epsilon K \geq |\Tilde{K} - K|$, where $K$ is the number of marked items, with failure probability less than $\delta$ and circuit depth less than $T_{max}$. Our algorithm uses $O\left( \frac{1}{T_{max} \epsilon^2} \frac{N}{K}\right)$ queries when $T_{max} \leq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ and $O\left(\frac{1}{\epsilon}\sqrt{\frac{N}{K}}\right)$ queries when $T_{max} \geq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$.
    We also give a matching query lower bound of depth-limited approximate counting of $ \Omega \left( \frac{N}{T_{max} \epsilon^2 K} \right)$ under the restrictions that the algorithm only runs Grover iterations to the maximum depth $T_{max}$, and $T_{max}$ satisfies $(2T_{max}+1) \theta \leq
    i/2$.

    Contents Abstract (Chinese) I Abstract II Acknowledgements (Chinese) III Contents IV List of Algorithms VI 1 Introduction 1 1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Past works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Our result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminary 9 2.1 Grover iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Aaronson-Rall’s approximate counting . . . . . . . . . . . . . . . . 10 2.3 Statistical distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Chernoff-Hoeffding inequality . . . . . . . . . . . . . . . . . . . . . 12 3 Depth-Limited Approximate Counting Lower Bound 13 4 Depth-Limited Approximate Counting Upper Bound 17 5 Conclusion 29 Bibliography 30

    [Amb10] Andris Ambainis. Variable time amplitude amplification and a faster
    quantum algorithm for solving systems of linear equations. arXiv
    preprint arXiv:1010.4458, 2010.
    [AR20] Scott Aaronson and Patrick Rall. Quantum approximate counting,
    simplified. In Symposium on simplicity in algorithms, pages 24–32.
    SIAM, 2020.
    [BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp.
    Quantum amplitude amplification and estimation. Contemporary
    Mathematics, 305:53–74, 2002.
    [FHIZ23] Shion Fukuzawa, Christopher Ho, Sandy Irani, and Jasen Zion.
    Modified iterative quantum amplitude estimation is asymptotically
    optimal. In 2023 Proceedings of the Symposium on Algorithm
    Engineering and Experiments (ALENEX), pages 135–147. SIAM,
    2023.
    [GGZW21] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner.
    Iterative quantum amplitude estimation. npj Quantum Information,
    7(1):52, 2021.
    30
    [Gro96] Lov K Grover. A fast quantum mechanical algorithm for database
    search. In Proceedings of the twenty-eighth annual ACM symposium
    on Theory of computing, pages 212–219, 1996.
    [GTKL+22] Tudor Giurgica-Tiron, Iordanis Kerenidis, Farrokh Labib, Anupam
    Prakash, and William Zeng. Low depth algorithms for quantum
    amplitude estimation. Quantum, 6:745, 2022.
    [HHL09] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
    algorithm for linear systems of equations. Physical review letters,
    103(15):150502, 2009.
    [Mon15] Ashley Montanaro. Quantum speedup of monte carlo methods.
    Proceedings of the Royal Society A: Mathematical, Physical and
    Engineering Sciences, 471(2181):20150301, 2015.
    [NW99] Ashwin Nayak and Felix Wu. The quantum query complexity of
    approximating the median and related statistics. In Proceedings of the
    thirty-first annual ACM symposium on Theory of computing, pages
    384–393, 1999.
    [RF23] Patrick Rall and Bryce Fuller. Amplitude estimation from quantum
    signal processing. Quantum, 7:937, 2023.
    [SUR+20] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka,
    Tamiya Onodera, and Naoki Yamamoto. Amplitude estimation
    without phase estimation. Quantum Information Processing, 19:1–
    17, 2020.
    [VO20] Ramgopal Venkateswaran and Ryan O’Donnell. Quantum
    approximate counting with nonadaptive grover iterations. arXiv
    preprint arXiv:2010.04370, 2020.
    31
    [Wie19] Chu-Ryang Wie. Simpler quantum counting. arXiv preprint
    arXiv:1907.08119, 2019

    QR CODE