研究生: |
雷皓哲 Lei, Hao-Zhe |
---|---|
論文名稱: |
深度有限的量子近似計數算法 Depth-Limited Quantum Approximate Counting Algorithm |
指導教授: |
林瀚仚
Lin, Han-Hsuan |
口試委員: |
韓永楷
Hon, Wing-Kai 賴青沂 Lai, Ching-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 量子搜尋 、量子近似計數 、電路深度限制 |
外文關鍵詞: | QauntumSearch, QauntumApproximateCounting, Depth-Limited, GroverSearch |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們給出了一個深度有限的量子近似計數演算法。該演算法接收輸入 $\epsilon, \delta, T_{max}$,並輸出 $\Tilde{K}$,即標記項數量的估計值,滿足 $\epsilon K \geq |\Tilde{K} - K|$,其中 $K$ 是標記項的數量,失敗概率小於 $\delta$,且電路深度小於 $T_{max}$。當 $T_{max} \leq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ 時,我們的演算法使用 $O\left( \frac{1}{T_{max} \epsilon^2} \frac{N}{K}\right)$ 查詢;當 $T_{max} \geq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ 時,使用 $O\left(\frac{1}{\epsilon}\sqrt{\frac{N}{K}}\right)$ 查詢。
我們還給出了深度限制的近似計數的匹配查詢下界 $ \Omega \left( \frac{N}{T_{max} \epsilon^2 K} \right)$,在以下限制條件下:演算法僅運行到最大深度 $T_{max}$ 的 Grover 算子,且 $T_{max}$ 滿足 $(2T_{max}+1) \theta \leq
i/2$。
We give an depth-limited quantum approximate counting algorithm. The algorithm takes input $\epsilon,\delta$, $T_{max}$ and outputs $\Tilde{K}$, an estimate of the number of marked items, satisfying $\epsilon K \geq |\Tilde{K} - K|$, where $K$ is the number of marked items, with failure probability less than $\delta$ and circuit depth less than $T_{max}$. Our algorithm uses $O\left( \frac{1}{T_{max} \epsilon^2} \frac{N}{K}\right)$ queries when $T_{max} \leq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$ and $O\left(\frac{1}{\epsilon}\sqrt{\frac{N}{K}}\right)$ queries when $T_{max} \geq \frac{1}{\epsilon}\sqrt{\frac{N}{K}}$.
We also give a matching query lower bound of depth-limited approximate counting of $ \Omega \left( \frac{N}{T_{max} \epsilon^2 K} \right)$ under the restrictions that the algorithm only runs Grover iterations to the maximum depth $T_{max}$, and $T_{max}$ satisfies $(2T_{max}+1) \theta \leq
i/2$.
[Amb10] Andris Ambainis. Variable time amplitude amplification and a faster
quantum algorithm for solving systems of linear equations. arXiv
preprint arXiv:1010.4458, 2010.
[AR20] Scott Aaronson and Patrick Rall. Quantum approximate counting,
simplified. In Symposium on simplicity in algorithms, pages 24–32.
SIAM, 2020.
[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp.
Quantum amplitude amplification and estimation. Contemporary
Mathematics, 305:53–74, 2002.
[FHIZ23] Shion Fukuzawa, Christopher Ho, Sandy Irani, and Jasen Zion.
Modified iterative quantum amplitude estimation is asymptotically
optimal. In 2023 Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 135–147. SIAM,
2023.
[GGZW21] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner.
Iterative quantum amplitude estimation. npj Quantum Information,
7(1):52, 2021.
30
[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 212–219, 1996.
[GTKL+22] Tudor Giurgica-Tiron, Iordanis Kerenidis, Farrokh Labib, Anupam
Prakash, and William Zeng. Low depth algorithms for quantum
amplitude estimation. Quantum, 6:745, 2022.
[HHL09] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical review letters,
103(15):150502, 2009.
[Mon15] Ashley Montanaro. Quantum speedup of monte carlo methods.
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 471(2181):20150301, 2015.
[NW99] Ashwin Nayak and Felix Wu. The quantum query complexity of
approximating the median and related statistics. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages
384–393, 1999.
[RF23] Patrick Rall and Bryce Fuller. Amplitude estimation from quantum
signal processing. Quantum, 7:937, 2023.
[SUR+20] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka,
Tamiya Onodera, and Naoki Yamamoto. Amplitude estimation
without phase estimation. Quantum Information Processing, 19:1–
17, 2020.
[VO20] Ramgopal Venkateswaran and Ryan O’Donnell. Quantum
approximate counting with nonadaptive grover iterations. arXiv
preprint arXiv:2010.04370, 2020.
31
[Wie19] Chu-Ryang Wie. Simpler quantum counting. arXiv preprint
arXiv:1907.08119, 2019