研究生: |
劉宇晨 Liu, Yu-Chen |
---|---|
論文名稱: |
預長氧化層HR-224超合金於超臨界水環境下之腐蝕研究 Corrosion Behavior of Pre-oxidized HR-224 superalloy in Supercritical Water |
指導教授: |
開執中
Kai, Ji-Jung |
口試委員: |
葉宗洸
開物 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 超臨界水 、鎳基超合金 、腐蝕 、氧化 |
外文關鍵詞: | supercritical water, Ni-based superalloy, corrosion, oxidation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超臨界水核反應器(Supercritical Water-Cooled Reactor, SCWR)主要特點在於其冷卻劑運轉溫度和壓力高於水的臨界點(374℃、22.1MPa)且為第四代核反應器設計中唯一的輕水式反應器。相較於現行輕水式反應器,其優點包括(1)熱轉換效率高於40%;(2)組件更簡潔;(3)結合既有輕水式核能反應器及超臨界態火力電廠;(4)更好的安全性。然而,由於爐心中的輻射以及水化學的變化將影響爐心核能結構材及護套材料的完整性。且在此嚴苛的水化學條件下,至今仍未找到合適的護套材料。
基於此理由,本論文中將新型鎳基超合金HR-224經982℃在流動的空氣環境中氧化100小時,預長一層連續且緻密的氧化鋁保護層後,將試片置於實驗溫度為700℃、壓力為 24.8MPa和溶氧量為8.3ppm的超臨界水環境下且腐蝕時間1300小時後,量測腐蝕後質量之改變,並透過電子顯微鏡技術探討其腐蝕機制。經高溫預長氧化層HR-224 鎳基超合金於高溶氧量 8.3 ppm、700℃的超臨界水中具有良好的抗腐蝕性。根據氧化層厚度而計算出的腐蝕後增重(w)與腐蝕時間(t)之關係遵守Δw=2.72×〖10〗^(-3)×t^0.71之趨勢。經高溫預長氧化層處理後,其氧化層分層為外層富結晶性之 spinel鐵、鉻和鎳氧化物混和物 ,中層為Cr2O3,內層為連續緻密且熱力學穩定的氧化鋁氧化層之三層氧化層結構。經超臨界水實驗後,氧化層結構並無明顯變化。氧化鋁層在100-1300小時腐蝕實驗後,厚度變化(Δd)與腐蝕時間(t)之關係遵守Δd = 3.26×〖10〗^(-2)×t^0.55之趨勢,接近拋物線率。而腐蝕時間1000小時以上,外層Spinel及Cr2O3層微幅成長。在預長氧化層處理後的所產生的氧化鋁有足夠的厚度,故在長時間腐蝕後,其連續性、完整性及附著性皆良好,使得長時間後氧化速率趨緩。
Abstract
Supercritical Water-cooled Reactor(SCWR) whose operating environment exceeds the critical pressure and temperature of water (22.4MPa and 374℃) has been considered by the Gen-IV Nuclear Energy System International Forum as an option for future light water reactor(LWR). The main advantages over the current LWR include: (1) higher thermal efficiency (2) more compact thermal component (3) combination of existing LWR plant and SCP fossil power plant technologies and (4) higher safety. However, the irradiation and change of water chemistry in the core of SCWR will affect the structural integrity and cladding materials. In this study, nickel-based superalloy HR-224 was pre-oxidized in flowing air at 982℃ for 100hr to establish a continuous and dense α-Al2O3 layer. Then it exposed in supercritical water (SCW) environment with 8.3 ppm oxygen content at 700℃ and 24.8MPa for cyclic oxidation testing up to 1300h.
According the result of oxidation thickness, calculated mass gains (w) in the samples as a function of test duration (t) could be fitted by an equation of Δw=2.72×〖10〗^(-3) t^0.7089.
In addition, after pre-oxidizing process, triple scales were observed, consisting of an outer layer of Ni(Cr, Fe)2O4 spinel, a middle layer was Cr2O3 and an inner layer of α-Al2O3. This scale structure remained unchanged after it was exposed in SCW environment after 1300hr. The thickness of α-Al2O3 layer increased with increasing duration of time. The thickness change (Δd) with exposure time (t) can be described as a function of Δd = 3.26×〖10〗^(-2)×t^0.55. The results show that the pre-oxidizedα-Al2O3 layer is thick enough to maintain good adherence and provides a better corrosion resistance for long exposure time in SCW.
[1] Climate Change 2001: Synthesis Report. 2001, Cambridge , UK: THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE.
[2] U.S.D.N.E.R.A. Committee, A Technology Roadmap for generation IV Nuclear Energy Systems. 2002.
[3] S.K. Yoshiaki Oka, Yuki Ishiwatari, Akifumi Yamaji, Super Light Water Reactors and Super Fast Reactors. 2010: Springer US.
[4] G.I.I. Forum, GIF R&D Outlook for Generation IV Nuclear Energy Systems. 2009.
[5] H. Khartabil, SCWR: Overview. 2009, Paris, France.
[6] U.S.D.N.E.R.A.C.a.t.G.I.I. Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems. December 2002.
[7] P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids, 2004. 29(1–2): p. 1-29.
[8] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, Corrosion and stress corrosion cracking in supercritical water. Journal of Nuclear Materials, 2007. 371(1–3): p. 176-201.
[9] P.B. Kritzer, N. Dinjus, E., Transpassive Dissolution of Alloy 625, Chromium, Nickel, and Molybdenum in High-Temperature Solutions Containing Hydrochloric Acid and Oxygen. Corrosion, 2000. 56(3): p. 265-272.
[10] T.M. Seward and E.U. Franck, The system hydrogen - water up to 440°C and 2500 bar pressure. Berichte der Bunsengesellschaft für physikalische Chemie, 1981. 85(1): p. 2-7.
[11] M.L. Japas and E.U. Franck, High Pressure Phase Equilibria and PVT-Data of the Water-Oxygen System Including Water-Air to 673 K and 250 MPa. Berichte der Bunsengesellschaft für physikalische Chemie, 1985. 89(12): p. 1268-1275.
[12] J.F. Connolly, Solubility of Hydrocarbons in Water Near the Critical Solution Temperatures. Journal of Chemical & Engineering Data, 1966. 11(1): p. 13-16.
[13] K.P. K. Bröllos, G.M. Schneider, Fluide Mischsysteme unter hohem Druck. Phasengleichgewichte und kritische Erscheinungen in den binären systemen cyclohexan–H2O, n-heptan–H2O, biphenyl–H2O und benzol-D2O bis 420 °C und 3000 bar. Ber. Bunsenges Phys. Chem, 1970. 74: p. 682.
[14] G.S. Z. Alwani, Druckeinfluß auf die Entmischung flüssiger Systeme. VI. Phasengleichgewichte und kritische Erscheinungen im System Benzol–H2O zwischen 250 und 368 °C bis 3700 bar. Ber. Bunsenges Phys. Chem. 71(1967): p. 633.
[15] P. Kritzer, Die Korrosion der Nickel-Basis-Legierung 625 unter hydrothermalen Bedingungen. 1998: Karlsruhe, Germany. p. 180.
[16] W.F.B.a.C. Bettendorf, Electrochemistry and Corrosion of Alloys in High-Temperature Water. 1986, Electric Power Research Institute: Palo Alto, CA.
[17] W.F.B.a.C. Bettendorf, High-Temperature Electro-chemistry and Corrosion,. 1988, Electric Power Research Institute: Palo Alto, CA.
[18] E.F.G. F. Matthews, Corrosion Behavior of Three High-Grade Alloys in Supercritical Water Oxidation Environments. 1992, Center for Research in Water Resources, Bureau of Engineering Research, University of Texas in Austin,Austin, TX. p. 73.
[19] L.B. Kriksunov and D.D. Macdonald, Corrosion in Supercritical Water Oxidation Systems: A Phenomenological Analysis. Journal of The Electrochemical Society, 1995. 142(12): p. 4069-4073.
[20] S. Huang, K. Daehling, E. Carleson Thomas, P. Taylor, C. Wai, and A. Propp, Thermodynamic Analysis of Corrosion of Iron Alloys in Supercritical Water, in Supercritical Fluid Science and Technology. 1989, American Chemical Society. p. 276-286.
[21] W. Downey Kevin, H. Snow Richard, D.A. Hazlebeck, and J. Roberts Adele, Corrosion and Chemical Agent Destruction, in Innovations in Supercritical Fluids. 1995, American Chemical Society. p. 313-326.
[22] J.C.O. D.B. Mitton, R.M. Latanision, Corrosion phenomena associated with SCWO systems, in Proceedings of the 3rd International Symposium on Supercritical Fluids, M.P. G. Brunner, Editor. 1994: Strasbourg, France. p. 43.
[23] R.R.S. S.F. Rice, C.A. LaJeunesse, Destruction of Representative Navy Wastes Using Supercritical Water Oxidation. 1994, Sandia National Laboratories, Livermore: Livermore, CA. p. 35.
[24] D.D.M. L.B. Kriksunov, Corrosion testing and prediction in SCWO environments
in Proceedings of the ASME Heat Transfer Division. 1995, The American Society of Mechanical Engineers: New York p. 281.
[25] S.J.B. D.M. Harradine, P.C. Dell′Orco, R.B. Dyer, B.R. Foy, J.M. Robinson, Oxidation chemistry of energetic materials in supercritical water. Hazardous Waste and Hazardous Materials, 1993. 10(2): p. 233.
[26] T. Adschiri, Y. Watanabe, K. Sue, and K. Arai, Estimation of Metal Oxide Solubility and Understanding Corrosion in Supercritical Water. NACE International.
[27] Y. Watanabe, K. Shoji, and T. Adschiri, Effects of Oxygen Concentration on Corrosion Behavior of Alloys in Acidic Supercritical Water. NACE International.
[28] C.K. D. Broll, A. Kramer, P. Krammer, T. Richter, M. Jung, H. Vogel, P. Zehner, Chemistry in supercritical water. Angew. Chem. Int. Ed. Engl, 1999. 38: p. 2999.
[29] A.A. Chialvo and P.T. Cummings, Molecular Simulation and Modeling of Supercritical Water and Aqueous Solutions, in Supercritical Fluids, E. Kiran, P. Debenedetti, and C. Peters, Editors. 2000, Springer Netherlands. p. 345-394.
[30] K. Johnston and P. Rossky, Solution Chemistry in Supercritical Water: Spectroscopy and Simulation, in Supercritical Fluids, E. Kiran, P. Debenedetti, and C. Peters, Editors. 2000, Springer Netherlands. p. 323-343.
[31] Z. Szklarska-Smialowska, Pitting and Crevice Corrosion. 2005: NACE International.
[32] C. Sun, R. Hui, W. Qu, and S. Yick, Progress in corrosion resistant materials for supercritical water reactors. Corrosion Science, 2009. 51(11): p. 2508-2523.
[33] A. Galerie, M. Caillet, and M. Pons, Oxidation of ion-implanted metals. Materials Science and Engineering, 1985. 69(2): p. 329-340.
[34] J.R. Conrad, R.A. Dodd, S. Han, M. Madapura, J. Scheuer, K. Sridharan, and F.J. Worzala, Ion beam assisted coating and surface modification with plasma source ion implantation. Journal of Vacuum Science & Technology A, 1990. 8(4): p. 3146-3151.
[35] S.T. Picraux, Physics of Ion Implantation (Ion Cascade Processes and Physical State of the Implanted Solid), in Surface Engineering, R. Kossowsky and S. Singhal, Editors. 1984, Springer Netherlands. p. 3-31.
[36] Y. Chen, K. Sridharan, and T. Allen, Corrosion behavior of ferritic–martensitic steel T91 in supercritical water. Corrosion Science, 2006. 48(9): p. 2843-2854.
[37] A. Agüero, R. Muelas, A. Pastor, and S. Osgerby, Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components. Surface and Coatings Technology, 2005. 200(5–6): p. 1219-1224.
[38] R. Hui, W. Cook, C. Sun, Y. Xie, P. Yao, J. Miles, R. Olive, J. Li, W. Zheng, and L. Zhang, Deposition, characterization and performance evaluation of ceramic coatings on metallic substrates for supercritical water-cooled reactors. Surface and Coatings Technology, 2011. 205(11): p. 3512-3519.
[39] C.T.S.a.W.C. Hagel, The Superalloys. 1972, New York: John Wiley & Sons.
[40] N.F.M.a.F.R.N. Nabarro, Report of the Conference on Strength of Solids. Physical Society, 1948: p. 1-19.
[41] R.M.N.P.a.N.J. Grant, Trans. Met. Soc, AIME, 1960. 218: p. 232-237.
[42] R.L. Fleischer, Acta Me, 1963: p. 203-209.
[43] R.G.D.a.N.S. Stoloff, Trans. Met. Soc. AIME, 1965. 233: p. 714-719.
[44] N.S.S.a.R.G. Davies, Prog. Mat. Sci., 1966. 1(13): p. 3-84.
[45] R.G.D. P. Beardmore, and T. L. Johnston, Trans. Met. Soc. AIME, 1969. 245: p. 1537-1545.
[46] B.H. Kear, C.T. Sims, N.S. Stoloff, and J.H. Westbrook, ORDERED ALLOYS. STRUCTURAL APPLICATIONS AND PHYSICAL METALLURGY. Proceedings of the Third Bolton Landing Conference, Lake George, New York, September 8--10, 1969. 1970.
[47] S.M.C.a.B.H. Kear, Trans. Met. Soc. AIME, 1967. 239: p. 984-992.
[48] C.L.C.a.B. Lisowsky, Trans. Met. Soc. AIME. 239(1967): p. 239-243.
[49] M.G. G. R. Leverant, and S. W. Hopkins, in Proc. Second Int. Conf. Strength Met. Alloys. 1970. p. 1141-1144.
[50] F.F. Barder, in Advances in the Technology of Stainless Steels and Related Alloys. STP 369. 1965, Philadelphia, Pa: ASTM.
[51] H.J.W.a. A.M.Hall, Physical Metallurgy of Alloy 718. June 1, 1965, Battelle Memorial Institute: Columbus, Ohio.
[52] J.F. Bader, Metal Progress, 1962. 81: p. 72-76.
[53] a.J.R.M. R.F. Decker, Trans. ASM, 1969. 62: p. 481-489.
[54] F.M.O. D.F. Paulonis, Trans. ASM,, 1969. 62: p. 611-622.
[55] V.P. Deodeshmukh, S.J. Matthews, and D.L. Klarstrom, High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air. International Journal of Hydrogen Energy, 2011. 36(7): p. 4580-4587.
[56] I.K.a.D.H. Warrington, Met. Trans, 1970. 1: p. 2667-2675.
[57] 黃日鉉, 國立清華大學工程與系統科學研究所碩士論文. 2009.
[58] 黃偉豪, 國立清華大學工程與系統科學研究所碩士論文. 2013.
[59] 鮑忠興,劉思謙, 近代穿透式電子顯微鏡實務. 1998: 滄海.
[60] 材料電子顯微鏡學. 科儀叢書3. 國科會精密儀器發展中心.
[61] 杜. 汪建民, 材料分析. 1998: 中國材料科學學會.
[62] R.T. Lefu ZHANG, Fawen ZHU, Peipeng QIAO, Yichen BAO, CORROSION SCREENING TEST OF SEVERAL CANDIDATE MATERIALS FOR SCWR CLADDING. 4th International Symposium on Supercritical Water-Cooled Reactors, Heidelberg, Germany, 2009.
[63] 陳世鳴, 國立清華大學核子工程與科學研究所碩士論文. 2014.
[64] A. Pfennig and B. Fedelich, Oxidation of single crystal PWA 1483 at 950 °C in flowing air. Corrosion Science, 2008. 50(9): p. 2484-2492.
[65] O.K. O. Knacke, K. Hesselmann, Thermo-chemical properties of inorganic substances I & II (2nd ed.). 1991, Berlin (Heidelberg) Springer.
[66] R.H. Doremus, Diffusion in alumina. Journal of Applied Physics, 2006. 100(10): p. -.
[67] J.K. Tien and F.S. Pettit, Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys. MT, 1972. 3(6): p. 1587-1599.
[68] T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D.P. Leta, The influence of yttrium on oxide scale growth and adherence. Oxid Met, 1988. 29(5-6): p. 445-472.
[69] W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, and H. Beske, Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys. Oxid Met, 1989. 32(1-2): p. 67-88.
[70] M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers. Metall and Mat Trans A, 2003. 34(11): p. 2609-2619.
[71] 張凱翔, 國立清華大學核子工程與科學研究所碩士論文. 2012.
[72] I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 1961. 19(1–2): p. 35-50.