研究生: |
黃琦雯 Chi-Wen Huang |
---|---|
論文名稱: |
氣相蛋白質晶片阻絕試劑應用於血清檢體之免疫螢光偵測 Vapor-phase blocking agent used for serum samples detection based on immuno-fluorescent protein chips |
指導教授: |
曾繁根
Fan-Gang Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 氣相阻絕 、生物晶片 、FOTS 、螢光免疫檢測 、血清檢體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般傳統蛋白質免疫分析法,應用血清作鍵結阻絕(Blocking),利用液體將表面反應官能基( surface reactive fuctional group)阻絕,而本研究專注於運用氣相蒸鍍小分子,使小分子得以與表面官能基反應,達到鍵結阻絕效果。利用傳統方式作鍵結阻絕,容易造成拖尾及交互汙染等問題,而且一般血清為大分子,以小牛血清(Bovine Serum Albumin, BSA)為例,其分子重量(molecular weight)約為66KD,會造成鍵結阻絕過程中,阻擋後續抗體進行辨認的因素。而利用蒸鍍小分子,不僅可減少交叉汙染的影響,且在適量的時間調控下,可以避免拖尾的現象。本研究使用的小分子,分子量為481.54遠比傳統血清小,在適當時間操作下,可避免部分由生物血清造成辨認障礙的問題。
本研究運用蒸鍍小分子達到鍵結阻絕的改善,比較純化檢體與血清檢體的檢測效果,在血清檢體下,氣相鍵結阻絕試劑可以提高噪訊比。因此,提出了氣相阻絕試劑,在血清系統中,由於背景值降低,訊號值升高,因此可提高噪訊比,提高檢測靈敏度。且本研究發現,傳統BSA阻絕在血清系統下,訊號值較純化系統提高很多,代表沾黏狀況嚴重,而氣相阻絕試劑在血清系統下訊號值相對來說增加比較少,因此提出氣相阻絕試劑比傳統生物血清阻絕效果好。
[1] A. M. Dupuy, et al., "Protein biochip systems for the clinical laboratory," Clin Chem Lab Med, vol. 43, pp. 1291-302, 2005.
[2] B. B. Haab, "Antibody arrays in cancer research," Mol Cell Proteomics, vol. 4, pp. 377-83, Apr 2005.
[3] D. Haible, et al., "Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses," J Virol Methods, vol. 135, pp. 9-16, Jul 2006.
[4] P. Francois, et al., "Comparison of fluorescence and resonance light scattering for highly sensitive microarray detection of bacterial pathogens," J Microbiol Methods, vol. 55, pp. 755-62, Dec 2003.
[5] P. Lorimier, et al., "Enhanced Chemiluminescence - a High-Sensitivity Detection System for in-Situ Hybridization and Immunohistochemistry," Journal of Histochemistry & Cytochemistry, vol. 41, pp. 1591-1597, Nov 1993.
[6] 李維欣, "[小晶片 大應用 ] 臨床診斷的大規模應用 將帶動商機," 2005.
[7] http://cdnet.stpi.org.tw/techroom/market/bio/bio033.htm, "全球生物晶片產業市場及未來," 2005.
[8] Q. Xu and K. S. Lam, "Protein and Chemical Microarrays-Powerful Tools for Proteomics," J Biomed Biotechnol, vol. 2003, pp. 257-266, 2003.
[9] 謝馨儀, "氣相式奈米自組裝單分子膜應用於生物晶片表面之生醫分子鍵結阻絕," 2006.
[10] 田育彰, "固定生物單體之生物活性與結構穩定性之探討," 2002.
[11] W. H. Scouten, et al., "Enzyme or protein immobilization techniques for applicaations in biosensor design," TIBTECH, vol. 13, 1995.
[12] E. Engvall and P. Perlman, "Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G," Immunochemistry, vol. 8, pp. 871-4, Sep 1971.
[13] 古燕華, "蛋白質微陣烈反應晶片材質與自我組裝單層分子之表面處理研究," 2001.
[14] A. Ulman, An Introduction to Ultrathin Organic Film : From Langmuir-Blodgett to Self-Assembly. San Diego: Academic Press, 1991.
[15] D. L. Allara, "Critical Issues in Applications of Self-Assembled Monolayers," Biosensors & Bioelectronics, vol. 10, pp. 771-783, 1995.
[16] L. D. White and C. P. Tripp, "Reaction of (3-aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces," Journal of Colloid and Interface Science, vol. 232, pp. 400-407, Dec 15 2000.
[17] K. Prime and G. Whitesides, "Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces," Science, vol. 252, pp. 1164-1167, May 24 1991.
[18] Susan C. Follstaedt, et al., "Protein Adhesion on SAM Coated Semiconductor Wafers: Hydrophobic Versus Hydrophilic Surfaces," Sandia National Laboratories, 2000.
[19] R. G. Chapman, et al., "Surveying for surfaces that resist the adsorption of proteins," Journal of the American Chemical Society, vol. 122, pp. 8303-8304, Aug 30 2000.
[20] P. Kingshott and H. J. Griesser, "Surfaces that resist bioadhesion," Current Opinion in Solid State and Materials Science, vol. 4, pp. 403-412, 1999.
[21] D. A. Herold, et al., "Oxidation of polyethylene glycols by alcohol dehydrogenase," Biochem Pharmacol, vol. 38, pp. 73-6, Jan 1 1989.
[22] T. Talarico, et al., "Autoxidation of pyridoxalated hemoglobin polyoxyethylene conjugate," Biochem Biophys Res Commun, vol. 250, pp. 354-8, Sep 18 1998.
[23] R. S. Kane, et al., "Kosmotropes form the basis of protein-resistant surfaces," Langmuir, vol. 19, pp. 2388-2391, Mar 18 2003.
[24] F. Frederix, et al., "Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents," Journal of Biochemical and Biophysical Methods, vol. 58, pp. 67-74, Jan 30 2004.
[25] L. S. Roach, et al., "Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants," Anal Chem, vol. 77, pp. 785-96, Feb 1 2005.
[26] A. Perrin, et al., "Quantification of specific immunological reactions by atomic force microscopy," Langmuir, vol. 13, pp. 2557-2563, Apr 30 1997.
[27] K. L. Brogan, et al., "Influence of surfactants and antibody immobilization strategy on reducing nonspecific protein interactions for molecular recognition force microscopy," Langmuir, vol. 20, pp. 9729-35, Oct 26 2004.
[28] Mike Wanebo, et al., "Molecular Vapor Deposition (MVD™)─ A New Method of Appling Moisture Barriers for Packaging Applications," in 2005 IEEE, 2005.
[29] W. R. Ashurst, et al., "Vapor phase anti-stiction coatings for MEMS," Ieee Transactions on Device and Materials Reliability, vol. 3, pp. 173-178, Dec 2003.
[30] A. Y. Fadeev and T. J. McCarthy, "Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: Monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon," Langmuir, vol. 16, pp. 7268-7274, Sep 5 2000.
[31] K. Wu, et al., "Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces," Langmuir, vol. 21, pp. 11795-11801, Dec 6 2005.
[32] B. Bhushan, et al., "Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices," Journal of Vacuum Science & Technology A, vol. 24, pp. 1197-1202, Jul-Aug 2006.
[33] Y. X. Zhuang, et al., "Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction," Journal of Micromechanics and Microengineering, vol. 16, pp. 2259-2264, Nov 2006.
[34] W. K. Huang, et al., "Organic selective-area patterning method for microlens array fabrication," Microelectronic Engineering, vol. 83, pp. 1333-1335, Apr-Sep 2006.
[35] T. M. Mayer, et al., "Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems," Journal of Vacuum Science & Technology B, vol. 18, pp. 2433-2440, Sep-Oct 2000.
[36] S. G. Yeo, et al., "Patterned amine surfaces with reduced background nonspecific protein adsorption fabricated by using inductively coupled plasma chemical vapor deposition," Journal of the Korean Physical Society, vol. 51, pp. 1000-1006, Sep 2007.
[37] http://www.moleculardevices.com/pages/instruments/gn_genepix4000.html.
[38] A. S. M. Chong and X. S. Zhao, "Functionalization of SBA-15 with APTES and characterization of functionalized materials," Journal of Physical Chemistry B, vol. 107, pp. 12650-12657, Nov 20 2003.
[39] G. Shen, et al., "Reaction of N-phenyl maleimide with aminosilane monolayers," Colloids and Surfaces B-Biointerfaces, vol. 35, pp. 59-65, May 1 2004.
[40] M. Voue, et al., "Biochemical interaction analysis on ATR devices: a wet chemistry approach for surface functionalization," Langmuir, vol. 23, pp. 949-55, Jan 16 2007.
[41] D. Devaprakasam, et al., "Boundary lubrication additives for aluminium: A journey from nano to macrotribology," Tribology International, vol. 38, pp. 1022-1034, Nov-Dec 2005.
[42] C. J. Morris and B. A. Parviz, "Self-assembly and characterization of Marangoni microfluidic actuators," Journal of Micromechanics and Microengineering, vol. 16, pp. 972-980, May 2006.