簡易檢索 / 詳目顯示

研究生: 王界皓
Wang, Chieh-Hao
論文名稱: 在上行非正交多重接取通訊系統中利用資源分配與使用者分組對總傳輸率及公平性之最佳化
Resource Allocation and User Grouping for Sum Rate and Fairness Optimization in Uplink NOMA Communication Systems
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 蔡育仁
Tsai, Yuh-Ren
伍紹勳
Wu, Sau Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 非正交多重接取資源分配最小均方差估計-連續干擾消除疊代注水法公平性大量連接
外文關鍵詞: Non-orthogonal multiple access, Resource allocation, MMSE-SIC, Iterative water-filling, Fairness, massive connectivity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在上行非正交多重接取(NOMA)通訊系統中, 系統總傳輸功率和公平性受到資源分配的策略和接收機結構的影響。在此篇論文中,我們在上行非正交多重接取中藉由分配頻段和能量給使用者同時研究總傳輸功率和公平性的最佳化,我們也研究在不同接收機結構下的上行非正交多重接取通訊系統。和正交多重接取(OMA)比起來,非正交多重接取可以提供L個使用者在每一個頻段,增加系統總傳輸功率和頻譜使用效率。N代表總共的頻段個數,我們有總共N乘L的總資源個數,因此非正交多重接取可以提供大量的連接。有了很大的使用者總數K,提出的架構可以利用多重使用者分集。 在5G當中,使用者感受度需要提升,這是一個挑戰讓我們去做資源分配同時考慮使用者感受度。沒有適當的分配目標的傳輸功率在上行非正交多重接取通訊系統中,基地台會一直無法解出使用者傳送的訊號。在此,我們限制每個使用者可以使用的頻段個數Ns,可以保證使用者在細胞邊緣也能被分配到資源。因此,公平性表現跟之前的著作比起來增加了。我們也應用演算法讓系統總傳輸功率疊代增加。在上行多重接取通訊系統中,我們藉由不同L和Ns的組合對系統總傳輸功率和公平性表現作最佳化並且比較與分析。


    In uplink Non-Orthogonal Multiple Access (NOMA) communication system, system sum rate and fairness are subject to resource allocation policy and receiver architecture.
    In this thesis, we study joint optimization of sum rate and fairness in uplink NOMA communication system by allocation of subbands and power to users. We also study in uplink NOMA communication with different receiver architecture.
    Compared to Orthogonal Multiple Access (OMA), NOMA can provide number of users L in each subband which improves system sum rate, spectrum efficiency. With total resources number N X L that N represents number of total subbands, NOMA can provide massive connectivity. With larger number of users K, multi-user diversity can be exploited with proposed scheme. Users experience should be improved in 5G, there is challenge for resource allocation considered with users experience. Without proper allocation of target data rate for each user in uplink NOMA communication system, a user can always be in outage. In this work, we constrain the number of subbands Ns that each user can use, users in cell-edge would be guaranteed in resource allocation. Hence, the fairness performance improve compared to prior arts. We also apply the algorithm to improve system sum rate iteratively. We have optimized, compared and analyzed the sum rate and fairness performance with different combination of L and Ns in the uplink NOMA communication system.

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Description and Motivation . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Prior Arts and Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Proposed Uplink NOMA Scheme . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Contribution and Achievement . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Background 7 2.1 OMA [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 FDMA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 OFDM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 OFDMA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Prior Arts of NOMA and SCMA Systems . . . . . . . . . . . . . . . . . . . 14 2.2.1 NOMA system [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 SCMA system [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Capacity Evaluation [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Capacity for OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Capacity for NOMA . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Capacity for MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Resource Allocation for NOMA System . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 IUI in NOMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Different Characteristics between Uplink and Downlink NOMA . . . 24 2.4.3 Resource Allocation for Uplink NOMA . . . . . . . . . . . . . . . . . 25 2.4.4 Prior Art Resource Allocation for Uplink NOMA [5] . . . . . . . . . 26 2.4.5 Our Resource Allocation for Uplink NOMA . . . . . . . . . . . . . . 27 3 Proposed Uplink NOMA Scheme 28 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.1 BS with single antenna (ZF-SIC) . . . . . . . . . . . . . . . . . . . . 31 3.1.2 BS with Nr antennas [6] [7] (MMSE-SIC) . . . . . . . . . . . . . . . 32 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 MMSE-SIC receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 ZF-SIC receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Proposed Resource Allocation Scheme . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Proposed Joint Subband Allocation and User Grouping Algorithm . . 39 3.3.2 Multi-band Iterative Water-filling Algorithm for uplink NOMA system 43 4 Simulations 48 4.1 Sum rate analysis for Fixed number of users K . . . . . . . . . . . . . . . . 49 4.2 Sum rate analysis with fixed resources number N L . . . . . . . . . . . . 50 4.3 Sum rate and fairness comparison with fixed resources number N L . . . 51 5 Conclusions 55 Bibliography 57

    [1] E.Dahlman, S.Parkvall, and J.Skold, “4G: LTE/ LTE-advanced for mobile broadband,”
    Academic Press, March 2011.
    [2] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept
    and practical considerations of non-orthogonal multiple access (noma) for future
    radio access,” in 2013 International Symposium on Intelligent Signal Processing and
    Communications Systems (ISPACS), pp. 770–774, Nov 2013.
    [3] S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, “Sparse code multiple access:
    An energy efficient uplink approach for 5g wireless systems,” in 2014 IEEE Global
    Communications Conference (GLOBECOM), pp. 4782–4787, Dec 2014.
    [4] D.Tse and P.Viswanath, “Fundamentals of wireless communication,” Cambridge University
    Press, May 2005.
    [5] M. Al-Imari, P. Xiao, M. Imran, and R. Tafazolli, “Uplink non-orthogonal multiple
    access for 5g wireless networks,” in 2014 11th International Symposium on Wireless
    Communications Systems (ISWCS), pp. 781–785, Aug 2014.
    [6] Y.Endo, Y.Kishiyama, and K.Higuchi, “Uplink non-orthogonal access with mmse-sic in
    the presence of inter-cell interference,” Proc. IEEE ISWCS2012 , pp. 261-265, Paris,
    France, Aug 2012.
    [7] K.Higuchi and A.Benjebbour, “Non-orthogonal multiple access with successive interference
    cancellation for future radio access,” IEICE TRANS. COMMUN., VOL.E98-B,
    NO. 3, Mar 2015.
    [8] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What will
    5g be?,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 1065–1082,
    June 2014.
    [9] K. Kim, H. Kim, and Y. Han, “Subcarrier and power allocation in ofdma systems,”
    in 2004 IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall, vol. 2,
    pp. 1058–1062 Vol. 2, Sept 2004.
    [10] S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition
    coding strategies: Design and experimental evaluation,” IEEE Trans. on Wireless
    Communications, vol. 11, pp. 2628–2639, July 2012.
    [11] K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu,
    “Uplink contention based scma for 5g radio access,” in 2014 Globecom Workshops (GC
    Wkshps), pp. 900–905, Dec 2014.
    [12] H. Nikopour and H. Baligh, “Sparse code multiple access,” in 2013 IEEE 24th International
    Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),
    pp. 332–336, Sept 2013.
    [13] P. Wang, J. Xiao, and L. Ping, “Comparison of orthogonal and non-orthogonal approaches
    to future wireless cellular systems,” IEEE Vehicular Technology Magazine,
    vol. 1, pp. 4–11, Sept 2006.
    [14] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, “Non-orthogonal multiple
    access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE
    Commun. Mag., vol. 53, pp. 74 – 81, Sept. 2015.
    [15] N. Zhang, J. Wang, G. Kang, and Y. Liu, “Uplink non-orthogonal multiple access for
    5G systems,” IEEE Commun. Lett., vol. 20, pp. 458–461, March 2016.
    [16] Y.Fu, C.W.Sung, C.S.Chen, and M.Coupechoux, “Double iterative waterfilling for sum
    rate maximization in multicarrier NOMA systems,” IEEE International Conference on
    Communications (ICC), May 2017.
    [17] R.Prasad, S.S.Das, and M.I.Rahman, “Adaptive phy-mac design for broadband wireless
    systems,” River Publishers Series in Communications, Jul 2010.
    [18] X.Su, H.Yu, W.Kim, C.Choi, and D.Choi, “Interference cancellation for non-orthogonal
    multiple access used in future wireless mobile networks,” EURASIP Journal on Wireless
    Communications and Networking, Jun 2016.
    [19] J.H.Wang, J.Y.Lin, and J.Wu, “Joint fairness and sum rate resource allocation for
    NOMA communications,” IEEE Conference on Standards for Communications and
    Networking(CSCN), Sept 2016.
    [20] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “Scma codebook design,” in
    2014 IEEE 80th Vehicular Technology Conference (VTC Fall), pp. 1–5, Sept 2014.
    [21] X. Chen, A. Benjebbour, A. Li, and A. Harada, “Multi-user proportional fair scheduling
    for uplink non-orthogonal multiple access (noma),” in 2014 IEEE 79th Vehicular
    Technology Conference (VTC Spring), pp. 1–5, May 2014.
    [22] L.Lei, D.Yuan, C.K.Ho, and S.Sun, “Joint optimization of power and channel allocation
    with non-orthogonal multiple access for 5g celluar systems,” IEEE Global Telecommunications
    Conference(Globecom), DEC 2015.
    [23] W.Yu, W.Rhee, S.Boyd, and J.Cioffi, “Iterative water-filling for gaussian vector
    multiple-access channels,” IEEE Transactions on Information Theory, vol. 50 , no.
    1, pp. 145-152, Jan 2004.
    [24] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness
    and discrimination for resource allocation in shared computer systems,” DEC Technical
    Report 301, Sept 1984.

    QR CODE