簡易檢索 / 詳目顯示

研究生: 陳致穎
論文名稱: 即時動態次結構系統之控制策略比較
Comparison of Control Strategies for Real-Time Dynamically Substructured Systems
指導教授: 杜佳穎
口試委員: 洪哲文
白明憲
杜佳穎
洪翊軒
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 動態次結構測試法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動態次結構測試法為混合測試法其中一種,同時具有數值模擬的方便性與物理元件的真實性,將待測系統中欲測試部分以實際物理元件搭建,其餘部分建模於電腦中,能實際搭建待測系統中任一部分,且以系統原尺寸進行測試,真實貼近物理元件動態行為,同時數值模擬則降低了實驗所需空間與成本,使動態次結構測試成為有效率的工程結構測試法。成功的動態次結構測試需要達成數值與物理兩次結構之接觸面輸出響應一致,運行如未拆解前系統,但物理次結構中伴隨機械致動元件而來的不理想動態破壞了輸出響應間的同步,此時我們需要優良且強健的控制器來確保測試成功。本研究將從文獻中提出三種控制策略,包含(i)仿真系統基礎、(ii)數值次結構基礎與(iii)輸出基礎控制策略,分析其優缺點,找出最適合即時動態次結構測試法之控制策略。前兩種控制策略將搭配動態基礎設計出典型的相位補償控制器;而輸出基礎控制策略則是採用幾何基礎,依據前向預測與曲線配適概念設計出時間延遲補償控制器。
    本論文將使用一組單輸入單輸出的質量彈簧阻尼系統做為實例,從控制器設計過程即開始控制策略之比較,並在常態與干擾條件下觀察三種控制策略之表現,分析其優缺點與強健性,最後從設計過程、實驗與模擬表現皆得出相同結果,典型相位補償控制器能提供較佳的控制表現與穩定性,而幾何基礎控制器因無考慮系統動態特性,並不適用於即時動態次結構測試法。


    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.3 研究目標 6 1.4 本文架構 7 第二章 動態次結構系統介紹 9 2.1 動態次結構動態分析介紹 10 2.2 質量彈簧阻尼系統之次結構拆解 11 第三章 動態次結構系統控制器設計 14 3.1 線性仿真系統基礎控制方法 14 3.1.1 傳動系統的線性控制器設計 15 3.1.2 添加高增益誤差回授之仿真系統基礎控制器 18 3.2 線性數值次結構基礎控制方法 21 3.2.1 狀態空間表達式之數值次結構基礎框架 22 3.2.2 狀態空間表達式之數值次結構基礎控制方法 23 3.2.3 質量彈簧阻尼系統之數值次結構基礎控制器 24 3.3 輸出基礎策略下之適應型時間補償控制方法 26 3.3.1 適應型前向預測演算法 27 3.3.2 過度補償之適應型前向預測介紹與穩定性探討 32 第四章 質量彈簧阻尼次結構系統之實驗架設 38 4.1 機台介紹與說明 38 4.2 系統識別 42 4.3 次結構控制器參數設計 44 第五章 質量彈簧阻尼次結構系統之模擬與實驗結果 46 5.1 模擬結果 48 5.2 實驗結果 58 5.3 模擬與實驗結果分析與討論 72 第六章 結論與未來工作 75 6.1 結論 75 6.2 未來工作 76

    [1] M. S. Williams, and A. Blakeborough, "Laboratory testing of structures under dynamic loads: an introductory review," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 359, pp. 1651-1669, 2001.
    [2] C. J. Dodds, and Plummer, A. R., "Laboratory road simulation for full vehicle testing : A Review," presented at the Symposium on International Automotive Technology, 2001.
    [3] X. Ji, Kajiwara, Kouichi, Nagae, Takuya, Enokida, Ryuta, Nakashima, Masayoshi, "A substructure shaking table test for reproduction of earthquake responses of high-rise buildings," Earthquake Engineering & Structural Dynamics, vol. 38, pp. 1381-1399, 2009.
    [4] F. Aghili, "A Mechatronic Testbed for Revolute-Joint Prototypes of a Manipulator," Robotics, IEEE Transactions on, vol. 22, pp. 1265-1273, 2006.
    [5] K. Dressler, M. Speckert, and G. Bitsch, "Virtual durability test rigs for automotive engineering," Vehicle System Dynamics, vol. 47, pp.387-401, 2009.
    [6] A. M. Reinhorn, M. Bruneau, S. Chu, X. Shao, and M. Pitman, "Large scale real time dynamic hybrid testing technique–Shake tables substructure testing," in Proceedings of ASCE Structures Congress, 2003, pp. 457-464.
    [7] A. P. Darby, A. Blakeborough, and M. S. Williams, "Improved control algorithm for real-time substructure testing," Earthquake Engineering & Structural Dynamics, vol. 30, pp. 431-448, 2001.
    [8] J. Y. Tu, "Development of numerical-substructure-based and output-based substructuring controllers," Structural Control and Health Monitoring, vol. 20, pp. 918-936, DOI: 10.1002/stc.1505,June 2013.
    [9] D. P. Stoten and R. A. Hyde, "Adaptive control of dynamically substructured systems: the single-input single-output case," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, pp. 63-79, 2006.
    [10] S. A. Neild, D. P. Stoten, D. Drury, and D. J. Wagg, "Control issues relating to real-time substructuring experiments using a shaking table," Earthquake Engineering & Structural Dynamics, vol. 34, pp. 1171-1192, 2005.
    [11] M. S. W. P. A. Bonnet, and A Blakeborough, "Compensation of actuator dynamics in real-time hybrid tests," in Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007, pp. 251-264.
    [12] M. I. Wallace, Wagg, D.J and S. A. Neild, "An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 461, pp. 3807-3826, December 8 2005.
    [13] M. Nasiri and M. Montazeri-Gh, "Time-delay compensation for actuator-based hardware-in-the-loop testing of a jet engine fuel control unit," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, August 24, 2012.
    [14] J. Y. Tu, Stoten, D. P., Hyde, R. A., and Li, G., "A state-space approach for the control of multivariable dynamically substructured systems," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, pp. 935-953, 2011.
    [15] E. Kreyszig, "Advanced engineering mathematics", New York: Wiley, 1999.
    [16] H. WD, T. JY. , and C. CY., "Dynamic Substructuring using Adaptive Forward Prediction Algorithm with Direct Delay Compensation Technique," in Asian Control Conference Istanbul, 2012.
    [17] M. I. Wallace, Sieber, J., Neild, S. A., Wagg, D. J., and Krauskopf, B., "Stability analysis of real-time dynamic substructuring using delay differential equation models," Earthquake Engineering & Structural Dynamics, vol. 34, pp. 1817-1832, 2005.
    [18] L. T. Engelborghs K, and Roose D., "Numerical bifurcation analysis of delay di erential equations using DDE-BIFTOOL," ACM Transactions on Mathematical Software, vol. 28, pp. 1-21, 2002.
    [19] Y. C. Chen, "Development and application of active real-time control system for multi-degree-of-freedom shaking table," MSc thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.
    [20] H. T. Yang, "Development of synchronisation controllers for substructuring tests of base-isolated structure systems," MSc thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE