研究生: |
李雅萱 Lee, Ya-Hsuan |
---|---|
論文名稱: |
以巨噬細胞承載包覆藥物相變液滴作為藥物傳遞載體之可行性研究 Feasibility Study of Using Macrophages as Drug Delivery Carriers for Drug-Loaded Phase-Change Droplets |
指導教授: | 葉秩光 |
口試委員: |
江啟勳
陳志成 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 細胞調控藥物傳遞 、巨噬細胞 、包覆藥物相變液滴 、聲學激發相變液滴汽化 、腫瘤治療 |
外文關鍵詞: | cell-mediated drug delivery, macrophages, drug-loaded phase-change droplets, acoustic droplet vaporization (ADV), tumor therapy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤形成的過程中,為能供給足夠的養分與氧氣,腫瘤內部進行急遽的血管新生,然而多數粗大且不健全,在血管無法供應足夠養分與氧氣的地方將形成缺氧性區域,而此區阻礙化學治療成為腫瘤治療的瓶頸,為此需要新的治療方法將藥物標靶至缺氧性區域。近期研究顯示,單核球及其分化的巨噬細胞會趨向腫瘤並滲透積聚於腫瘤缺氧性區域,因此我們期望利用巨噬細胞之此特性將藥物或基因傳遞至腫瘤內部缺氧缺血區。
本研究之目的是探討利用巨噬細胞滲透至腫瘤之特性,承載包覆藥物相變液滴作為藥物傳遞載體。自製相變液滴以疏水作用力和靜電吸引力包覆一線化療
藥物阿黴素(DOX)於相變液滴脂質殼層之疏水端,作為新式藥物載體(DOX-Droplet),藉由超音波熱效應或機械效應可將相變液滴內所包覆之液態全氟碳化合物轉變為氣態,此稱為acoustic droplet vaporization(ADV),並藉由此相變液滴汽化之爆破性膨脹、穴蝕效應、殼層破裂將藥物作釋放。
研究工作首先為製備藥物載體,並針對DOX-Droplet做完整的特性量測。將DOX-Droplet與小鼠巨噬細胞株(RAW 264.7)一同培養,藉由吞噬作用,巨噬細胞將承載包覆藥物相變液滴,對已承載DOX-Droplet之巨噬細胞進行多項評估,包含巨噬細胞對DOX-Droplet之攝取量,其細胞存活率是否受到DOX-Droplet之影響,以及探討承載DOX-Droplet是否阻礙細胞移行之能力,最後利用3.5-MHz高能聚焦式超音波探頭發射極短脈衝(3 cycles, 200 Hz pulse repetition frequency (PRF) , 12 MPa)激發承載DOX-Droplet之巨噬細胞,收集照射後的細胞溶液上清液,加入小鼠攝護腺癌細胞株(Tramp-C1),待48小時後量測Tramp-C1細胞存活率以評估承載相變液滴之巨噬細胞藉由超音波激發釋藥之效果。
結果顯示以巨噬細胞承載包覆藥物相變液滴作為藥物傳遞載體於未來應用上極具發展潛力。在24小時內巨噬細胞存活率未受承載相變液滴而有所影響,在細胞移行能力上,承載越多的相變液滴將導致細胞移行能力的降低,然而此問題可以採用多次治療的方式或針對細胞進行移行能力訓練作補償。透過高速攝影機拍攝影像,我們可得知高能聚焦式超音波確實能將巨噬細胞體內之相變液滴進行激發,並在汽化的同時將其上藥物作釋放達到毒殺腫瘤細胞之效果。
本研究所提出的以巨噬細胞作為藥物傳遞載體,包含承載藥物、標靶傳遞至腫瘤、超音波激發釋藥之系統,經評估極具可行性,但卻面臨藥物承載量有限導致治療效果不佳之問題,未來工作將改進藥物載體,增進載藥量並著重於藥物滯留能力,並探討相變液滴汽化同時產生之機械行效應,期望本研究於未來可實際應用於腫瘤動物模型治療上。
Tumors normally possess irregular vasculature, and tend to outstrip blood supplement and become hypoxia or ischemia, which results in the resistances of the tumor to chemotherapy treatment. New therapies are required to target hypoxic or ischemic areas in tumors. Recently, many studies have shown that monocytes and derived macrophages can be engineered to actively migrate toward tumors and infiltrate avascular and hypoxic areas. The properties of macrophages prompted us to propose the drug or genes delivery by macrophages to otherwise inaccessible areas within tumors.
The aim of this study is to investigate the feasibility of using macrophages to infiltrate hypoxic or ischemic areas in tumors, as the carriers of drug-loaded phase-change droplets. We develope a drug-loaded droplet formulation (DOX-Droplet) with a high loading capacity of doxorubicin (DOX) drug, which was complexed to the lipid shell by both hydrophobic and electrostatic interactions. Ultrasound induced the transition from liquid droplets to gas bubbles was referred as the effect of acoustic droplet vaporization (ADV), and ADV can trigger encapsulated drug release from the droplet-loaded macrophages.
DOX-Droplets were fabricated via the thin-film hydration method. The DOX drug encapsulation efficiency was 76.55 ± 5.97% estimated by a Fluorescence spectrophotometer. RAW 264.7 cells (mouse leukaemic monocyte macrophage cell line) were used to ingest the drug-loaded phase-change droplets. For evaluating DOX-Droplets uptake efficiency, cell viability and migration mobility of DOX-Droplet loaded macrophages, flow cytometric analysis, alarmarBlueTM assay, and transmembrane cell migration assay were measured, respectively. In vitro ultrasound triggering DOX release, a 3.5-MHz high-intensity focused ultrasound transducer was used. The DOX-Droplets loaded RAW 264.7 cells were insonated by a three-cycle, 200 Hz PRF and 12-MPa HIFU pulses for 10 min. After exposed to ultrasound the supernatant was collected and incubated with Tramp-C1 cells (mouse prostate cancer cell line) for 48 hr. The cytotoxicity of DOX released from DOX-Droplets loaded RAW 264.7 cells was evaluated by Tramp-C1 cell viability.
The results demonstrate the feasibility of using macrophages to deliver DOX-loaded phase-change droplets. Cell viability assays reveals that the loading of droplets did not affect cell viability for 24 hr. But transmembrane cell migration assay reveals that the loading of droplets hampered the migration mobility of RAW 264.7 cells. In addition, Tramp-C1 cell viability analysis performed that ultrasound can trigger DOX release from DOX-droplet loaded RAW 264.7 cells effectively and the release DOX killed the Tramp-C1 cell.
Future works include the drug payload and retention improvement of DOX-Droplet, the assessments of mechanical effect of droplet vaporization on therapy and the liberated drug payload via ultrasound-triggered vaporization in vivo.
[1] A. L. L. R.W. Wood, "The physical and biological effects of high frequency sound waves of great intensity," Philosophical Magazine, vol. 22, pp. 417-436, 1927.
[2] S. Mitragotri and J. Kost, "Low-frequency sonophoresis: a review," Advanced Drug Delivery Reviews, vol. 56, pp. 589-601, Mar 27 2004.
[3] N. B. Smith, S. Lee, E. Maione, R. B. Roy, S. McElligott, and K. K. Shung, "Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs," Ultrasound in Medicine and Biology, vol. 29, pp. 311-317, 2003.
[4] K. H. MASAHIDE KUROKI, HIRONORI ABE, HIROTOMO SHIBAGUCHI,, S.-I. M. MOTOMU KUROKI, JUN YANAGISAWA,, and T. T. a. Y. Y. TETSUSHI KINUGASA, "Sonodynamic therapy of cancer using novel sonosensitizers," ANTICANCER RESEARCH, vol. 27, 2007.
[5] U. R. Shaul Atar, "Perspectives on the Role of Ultrasonic Devices in Thrombolysis," Journal of Thrombosis and Thrombolysis, vol. 17, pp. 107-114, 2004.
[6] S. Mitragotri, "Healing sound: the use of ultrasound in drug delivery and other therapeutic applications," Nature Reviews Drug Discovery, vol. 4, pp. 255-260, Mar 2005.
[7] R. Kunstfeld, G. Wickenhauser, U. Michaelis, M. Teifel, W. Umek, K. Naujoks, K. Wolff, and P. Petzelbauer, "Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a "humanized" SCID mouse model," Journal of Investigative Dermatology, vol. 120, pp. 476-482, Mar 2003.
[8] E. L. Yuh, S. G. Shulman, S. A. Mehta, J. W. Xie, L. L. Chen, V. Frenkel, M. D. Bednarski, and K. C. P. Li, "Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: Study in a murine model," Radiology, vol. 234, pp. 431-437, Feb 2005.
[9] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-296, Aug 2008.
[10] J. E. Kennedy, "High-intensity focused ultrasound in the treatment of solid tumours," Nature Reviews Cancer, vol. 5, pp. 321-7, Apr 2005.
[11] N. d. Jong, "Improvements of ultrasound contrast agents," IEEE engineering in medicine and biology, vol. 15, pp. 72-82, 1996.
[12] P. A. Dijkmans, L. J. Juffermans, R. J. Musters, A. van Wamel, F. J. ten Cate, W. van Gilst, C. A. Visser, N. de Jong, and O. Kamp, "Microbubbles and ultrasound: from diagnosis to therapy," European Journal of Echocardiography, vol. 5, pp. 245-56, Aug 2004.
[13] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound in Medicine and Biology, vol. 26, pp. 965-75, Jul 2000.
[14] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, "Ultrasound contrast agents - Basic principles," European Journal of Radiology, vol. 27, pp. S157-S160, May 1998.
[15] N. Dejong, L. Hoff, T. Skotland, and N. Bom, "Absorption and Scatter of Encapsulated Gas Filled Microspheres - Theoretical Considerations and Some Measurements," Ultrasonics, vol. 30, pp. 95-103, Mar 1992.
[16] J. R. Lindner, "Microbubbles in medical imaging: current applications and future directions," Nature Reviews Drug Discovery, vol. 3, pp. 527-532, Jun 2004.
[17] I. Lentacker, S. C. De Smedt, and N. N. Sanders, "Drug loaded microbubble design for ultrasound triggered delivery," Soft Matter, vol. 5, pp. 2161-2170, 2009.
[18] T. H. Yu, Z. B. Wang, and T. J. Mason, "A review of research into the uses of low level ultrasound in cancer therapy," Ultrasonics Sonochemistry, vol. 11, pp. 95-103, Apr 2004.
[19] H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, "Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment," Radiology, vol. 255, pp. 415-425, May 2010.
[20] S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, "Effect of Microbubble Size on Fundamental Mode High Frequency Ultrasound Imaging in Mice," Ultrasound in Medicine and Biology, vol. 36, pp. 935-948, Jun 2010.
[21] K.-i. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S.-i. Umemura, "Nanoparticles with Multiple Perfluorocarbons for Controllable Ultrasonically Induced Phase Shifting," Japanese Journal of Applied Physics, vol. 44, pp. 4548-4552, 2005.
[22] R. E. Apfel, "Activatable Infusable Dispersions Containing Drops of a Superheated Liquid for Methods of Therapy and Diagnosis," United States Patent vol. 5,840,276, 1998.
[23] M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion," Ultrasound in Medicine and Biology, vol. 36, pp. 1364-75, Aug 2010.
[24] E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, "Therapeutic applications of lipid-coated microbubbles," Advanced Drug Delivery Reviews, vol. 56, pp. 1291-314, May 7 2004.
[25] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Progress in Cardiovascular Diseases, vol. 44, pp. 13-31, Jul-Aug 2001.
[26] A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, "Acoustic droplet vaporization threshold: Effects of pulse duration and contrast agent," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 54, pp. 933-946, May 2007.
[27] P. Mohan and N. Rapoport, "Doxorubicin as a Molecular Nanotheranostic Agent: Effect of Doxorubicin Encapsulation in Micelles or Nanoemulsions on the Ultrasound-Mediated Intracellular Delivery and Nuclear Trafficking," Molecular Pharmaceutics, vol. 7, pp. 1959-1973, Nov-Dec 2010.
[28] N. Reznik, R. Williams, and P. N. Burns, "Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent," Ultrasound in Medicine and Biology, vol. 37, pp. 1271-9, Aug 2011.
[29] M. W. Chang, E. Stride, and M. Edirisinghe, "A novel process for drug encapsulation using a liquid to vapour phase change material," Soft Matter, vol. 5, pp. 5029-5036, 2009.
[30] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound in Medicine and Biology, vol. 26, pp. 1177-1189, Sep 2000.
[31] Z. Z. Wong, O. D. Kripfgans, A. Qamar, J. B. Fowlkes, and J. L. Bull, "Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging," Soft Matter, vol. 7, pp. 4009-4016, 2011.
[32] N. de Jong, A. Bouakaz, and P. Frinking, "Basic acoustic properties of microbubbles," Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques, vol. 19, pp. 229-240, Apr 2002.
[33] M. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, "Initial investigation of acoustic droplet vaporization for occlusion in canine kidney," Ultrasound in Medicine and Biology, vol. 36, pp. 1691-703, Oct 2010.
[34] P. Zhang and T. Porter, "An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation," Ultrasound in Medicine and Biology, vol. 36, pp. 1856-66, Nov 2010.
[35] L. H. Hartwell and M. B. Kastan, "Cell-Cycle Control and Cancer," Science, vol. 266, pp. 1821-1828, Dec 16 1994.
[36] K. Vermeulen, D. R. Van Bockstaele, and Z. N. Berneman, "The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer," Cell Proliferation, vol. 36, pp. 131-149, Jun 2003.
[37] B. Vogelstein, D. Lane, and A. J. Levine, "Surfing the p53 network," Nature, vol. 408, pp. 307-310, Nov 16 2000.
[38] K. A. Schafer, "The cell cycle: A review," Veterinary Pathology, vol. 35, pp. 461-478, Nov 1998.
[39] M. B. Kastan, C. E. Canman, and C. J. Leonard, "P53, Cell-Cycle Control and Apoptosis - Implications for Cancer," Cancer and Metastasis Reviews, vol. 14, pp. 3-15, Mar 1995.
[40] D. G. Albertson, C. Collins, F. McCormick, and J. W. Gray, "Chromosome aberrations in solid tumors," Nature Genetics, vol. 34, pp. 369-376, Aug 2003.
[41] J. M. Nigro, S. J. Baker, A. C. Preisinger, J. M. Jessup, R. Hostetter, K. Cleary, S. H. Bigner, N. Davidson, S. Baylin, P. Devilee, T. Glover, F. S. Collins, A. Weston, R. Modali, C. C. Harris, and B. Vogelstein, "Mutations in the P53 Gene Occur in Diverse Human-Tumor Types," Nature, vol. 342, pp. 705-708, Dec 7 1989.
[42] P. Anand, A. B. Kunnumakara, C. Sundaram, K. B. Harikumar, S. T. Tharakan, O. S. Lai, B. Y. Sung, and B. B. Aggarwal, "Cancer is a Preventable Disease that Requires Major Lifestyle Changes," Pharmaceutical Research, vol. 25, pp. 2097-2116, Sep 2008.
[43] K. Hede, "Environmental protection: Studies highlight importance of tumor microenvironment," Journal of the National Cancer Institute, vol. 96, pp. 1120-1121, Aug 4 2004.
[44] P. Vaupel, F. Kallinowski, and P. Okunieff, "Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors - a Review," Cancer Res, vol. 49, pp. 6449-6465, Dec 1 1989.
[45] S. J. Lunt, N. Chaudary, and R. P. Hill, "The tumor microenvironment and metastatic disease," Clinical & Experimental Metastasis, vol. 26, pp. 19-34, Jan 2009.
[46] C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model," Cancer Res, vol. 63, pp. 7232-7240, Nov 1 2003.
[47] J. Folkman, "Fundamental concepts of the angiogenic process," Current Molecular Medicine, vol. 3, pp. 643-651, Nov 2003.
[48] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nature Medicine, vol. 6, pp. 389-395, Apr 2000.
[49] W. Risau, "Mechanisms of angiogenesis," Nature, vol. 386, pp. 671-674, Apr 17 1997.
[50] C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, "The role of myeloid cells in the promotion of tumour angiogenesis," Nature Reviews Cancer, vol. 8, pp. 618-631, Aug 2008.
[51] A. Albini and M. B. Sporn, "The tumour microenvironment as a target for chemoprevention," Nature Reviews Cancer, vol. 7, pp. 139-147, Feb 2007.
[52] T. Hagemann, F. Balkwill, and T. Lawrence, "Inflammation and cancer: A double-edged sword," Cancer Cell, vol. 12, pp. 300-301, Oct 2007.
[53] L. Kopfstein and G. Christofori, "Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment," Cellular and Molecular Life Sciences, vol. 63, pp. 449-468, Feb 2006.
[54] J. JB Hibbs, RR Taintor, HA Chapman, Jr and JB Weinberg, "Macrophage tumor killing: influence of the local environment," Science, vol. 197, pp. 279-282 1977.
[55] T. D. Tlsty and L. M. Coussens, "Tumor stroma and regulation of cancer development," Annual Review of Pathology-Mechanisms of Disease, vol. 1, pp. 119-150, 2006.
[56] 李長安, "癌症治療與用藥手冊," 全國藥品年鑑雜誌社, 2008.
[57] N. C. Denko, "Hypoxia, HIF1 and glucose metabolism in the solid tumour," Nature Reviews Cancer, vol. 8, pp. 705-713, 2008 2008.
[58] A. I. Minchinton and I. F. Tannock, "Drug penetration in solid tumours," Nature Reviews Cancer, vol. 6, pp. 583-592, Aug 2006.
[59] P. Carmeliet, Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, and E. Keshert, "Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis," Nature, vol. 395, pp. 525-525, Oct 1 1998.
[60] A. L. Harris, "Hypoxia - A key regulatory factor in tumour growth," Nature Reviews Cancer, vol. 2, pp. 38-47, Jan 2002.
[61] N. C. D. a. A. J. G. Quynh-Thu Le, "Hypoxic gene expression and metastasis," Cancer and Metastasis Reviews, vol. 23, pp. 293-310, 2004.
[62] M. Muthana, A. Giannoudis, S. D. Scott, H. Y. Fang, S. B. Coffelt, F. J. Morrow, C. Murdoch, J. Burton, N. Cross, B. Burke, R. Mistry, F. Hamdy, N. J. Brown, L. Georgopoulos, P. Hoskin, M. Essand, C. E. Lewis, and N. J. Maitland, "Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors," Cancer Research, vol. 71, pp. 1805-1815, Mar 1 2011.
[63] E. V. Batrakova, S. Li, A. D. Reynolds, R. L. Mosley, T. K. Bronich, A. V. Kabanov, and H. E. Gendelman, "A macrophage-nanozyme delivery system for Parkinson's disease," Bioconjugate Chemistry, vol. 18, pp. 1498-1506, Sep-Oct 2007.
[64] S. Jain, V. Mishra, P. Singh, P. K. Dubey, D. K. Saraf, and S. P. Vyas, "RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting," International Journal of Pharmaceutics, vol. 261, pp. 43-55, Aug 11 2003.
[65] U. Steinfeld, C. Pauli, N. Kaltz, C. Bergemann, and H. H. Lee, "T lymphocytes as potential therapeutic drug carrier for cancer treatment," International Journal of Pharmaceutics, vol. 311, pp. 229-236, Mar 27 2006.
[66] F. J. Muller, E. Y. Snyder, and J. F. Loring, "Gene therapy: can neural stem cells deliver?," Nature Reviews Neuroscience, vol. 7, pp. 75-84, Jan 2006.
[67] A. Mantovani, "The chemokine system: redundancy for robust outputs," Immunology Today, vol. 20, pp. 254-257, Jun 1999.
[68] A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, "The chemokine system in diverse forms of macrophage activation and polarization," Trends in Immunology, vol. 25, pp. 677-686, Dec 2004.
[69] A. Sica and V. Bronte, "Altered macrophage differentiation and immune dysfunction in tumor development," Journal of Clinical Investigation, vol. 117, pp. 1155-1166, May 2007.
[70] A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, "Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy," European Journal of Cancer, vol. 42, pp. 717-727, Apr 2006.
[71] G. Solinas, G. Germano, A. Mantovani, and P. Allavena, "Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation," Journal of Leukocyte Biology, vol. 86, pp. 1065-1073, Nov 2009.
[72] C. Lewis and C. Murdoch, "Macrophage responses to hypoxia - Implications for tumor progression and anti-cancer therapies," American Journal of Pathology, vol. 167, pp. 627-635, Sep 2005.
[73] C. Murdoch, A. Giannoudis, and C. E. Lewis, "Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues," Blood, vol. 104, pp. 2224-2234, Oct 15 2004.
[74] M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, "A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors," Nano Letters, vol. 7, pp. 3759-3765, Dec 2007.
[75] H. Y. Dou, C. B. Grotepas, J. M. McMillan, C. J. Destache, M. Chaubal, J. Werling, J. Kipp, B. Rabinow, and H. E. Gendelman, "Macrophage Delivery of Nanoformulated Antiretroviral Drug to the Brain in a Murine Model of NeuroAIDS," Journal of Immunology, vol. 183, pp. 661-669, Jul 1 2009.
[76] J. Choi, H. Y. Kim, E. J. Ju, J. Jung, J. Park, H. K. Chung, J. S. Lee, J. S. Lee, H. J. Park, S. Y. Song, S. Y. Jeong, and E. K. Choi, "Use of macrophages to deliver therapeutic and imaging contrast agents to tumors," Biomaterials, vol. 33, pp. 4195-4203, Jun 2012.
[77] S. J. Madsen, S. K. Baek, A. R. Makkouk, T. Krasieva, and H. Hirschberg, "Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy," Annals of Biomedical Engineering, vol. 40, pp. 507-515, Feb 2012.
[78] L. M. Kornmann, D. M. J. Curfs, E. Hermeling, I. van der Made, M. P. J. de Winther, R. S. Reneman, K. D. Reesink, and A. P. G. Hoeks, "Perfluorohexane-loaded macrophages as a novel ultrasound contrast agent: A feasibility study," Molecular Imaging and Biology, vol. 10, pp. 264-270, Sep 2008.
[79] R. R. Patil, S. A. Guhagarkar, and P. V. Devarajan, "Engineered nanocarriers of doxorubicin: A current update," Critical Reviews in Therapeutic Drug Carrier Systems, vol. 25, pp. 1-61, 2008.
[80] R. von Moos, B. J. K. Thuerlimann, M. Aapro, D. Rayson, K. Harrold, J. Sehouli, F. Scotte, D. Lorusso, R. Dummer, M. E. Lacouture, J. Lademann, and A. Hauschild, "Pegylated liposomal doxorubicin-associated hand-foot syndrome: Recommendations of an international panel of experts," European Journal of Cancer, vol. 44, pp. 781-790, Apr 2008.
[81] E. R. Gillies and J. M. J. Frechet, "Dendrimers and dendritic polymers in drug delivery," Drug Discovery Today, vol. 10, pp. 35-43, Jan 1 2005.
[82] N. Rapoport, Z. Gao, and A. Kennedy, "Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy," Journal of the National Cancer Institute, vol. 99, pp. 1095-106, Jul 18 2007.
[83] N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles," Journal of Controlled Release, vol. 138, pp. 268-276, Sep 15 2009.
[84] J.-Y. Fang, C.-F. Hung, S.-C. Hua, and T.-L. Hwang, "Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells," Ultrasonics, vol. 49, pp. 39-46, 2009.
[85] T. L. Hwang, Y. K. Lin, C. H. Chi, T. H. Huang, and J. Y. Fang, "Development and Evaluation of Perfluorocarbon Nanobubbles for Apomorphine Delivery," Journal of Pharmaceutical Sciences, vol. 98, pp. 3735-3747, Oct 2009.
[86] M. A. Borden, G. V. Martinez, J. Ricker, N. Tsvetkova, M. Longo, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, "Lateral phase separation in lipid-coated microbubbles," Langmuir, vol. 22, pp. 4291-4297, Apr 25 2006.
[87] R. M. Epand and S. W. Hui, "Effect of Electrostatic Repulsion on the Morphology and Thermotropic Transitions of Anionic Phospholipids," Febs Letters, vol. 209, pp. 257-260, Dec 15 1986.
[88] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I - Formulation development and in-vitro characterization," Journal of Controlled Release, vol. 143, pp. 143-150, Apr 2 2010.
[89] N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, "Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers," Bubble Science, Engineering and Technology, vol. 1, pp. 31-39, 2009.
[90] S. Tinkov, C. Coester, S. Serba, N. A. Geis, H. A. Katus, G. Winter, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization," Journal of Controlled Release, vol. 148, pp. 368-372, Dec 20 2010.
[91] L. N. Du, Y. G. Jin, W. Y. Zhou, and J. Y. Zhao, "Ultrasound-Triggered Drug Release and Enhanced Anticancer Effect of Doxorubicin-Loaded Poly(D,L-Lactide-Co-Glycolide)-Methoxy-Poly(Ethylene Glycol) Nanodroplets," Ultrasound in Medicine and Biology, vol. 37, pp. 1252-1258, Aug 2011.
[92] H. Hillaireau and P. Couvreur, "Nanocarriers' entry into the cell: relevance to drug delivery," Cellular and Molecular Life Sciences, vol. 66, pp. 2873-2896, Sep 2009.
[93] V. Schafer, H. Vonbriesen, R. Andreesen, A. M. Steffan, C. Royer, S. Troster, J. Kreuter, and H. Rubsamenwaigmann, "Phagocytosis of Nanoparticles by Human-Immunodeficiency-Virus (Hiv)-Infected Macrophages - a Possibility for Antiviral Drug Targeting," Pharmaceutical Research, vol. 9, pp. 541-546, Apr 1992.
[94] 吳維宸,"建立以單核球作為細胞載體攜帶抗癌藥物及影像對比劑之傳遞系統",國立清華大學生醫工程與環境科學研究所碩士論文,2012.
[95] J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, "A study of the formulation design of acoustically active lipospheres as carriers for drug delivery," European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, pp. 67-75, Aug 2007.
[96] I. Lentacker, B. Geers, J. Demeester, S. C. De Smedt, and N. N. Sanders, "Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved," Molecular Therapy, vol. 18, pp. 101-108, Jan 2010.
[97] M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, and K. W. Ferrara, "DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles," Langmuir, vol. 23, pp. 9401-9408, Aug 28 2007.