簡易檢索 / 詳目顯示

研究生: 王法禹
Wang, Fa-Yu
論文名稱: 應用於生醫訊號分析之確定性盲訊號抽取
Deterministic Blind Extraction of Signals for Biomedical Signal Analysis
指導教授: 祁忠勇
Chi, Chong-Yung
口試委員: 李大嵩
李夢麟
吳文榕
馮世邁
祁忠勇
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 盲訊號源分離非負訊號源非負最小關聯分析法聯合相關函數疊代式體積最大化方法多重根-多重信號分類螢光衰減信號子空間距離數據分割法
外文關鍵詞: Blind source separation, Non-negative source signal, Non-negative least-correlated component analysis, Joint correlation function of multiple signals, Iterative volume maximization method, MR-MUSIC, Fluorescence decay signals, Subspace distance data segmentation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然盲訊號源分離(blind source separation)技術已被廣泛研究,但多數現存方法需假定訊號源是統計獨立或不相關的。然而在許多生物醫學應用中,因訊號源體現了活體細胞中蛋白質和分子的交互作用,故訊號源是彼此相關的,導致傳統的獨立成分分析法(independent component analysis)無法適用。有鑑於此我們專注於確定性質(deterministic properties)的相關性訊號源盲分離技術。我們主要研究兩種類型的訊號源分離:在本論文的第一部分,處理非負訊號源的分離問題,這常出現於以下生物醫學成像方法中,包含動態對比增強的磁共振成像(dynamic contrast enhanced-magnetic resonance imaging),X-射線成像、超音波成像(ultrasonic imaging)和螢光顯微鏡成像(fluorescence microscope imaging),或者出現於頻譜分析中,例如核磁共振頻譜(Nuclear magnetic resonance spectrum)和紅外光譜等分析方法。藉由降低兩非負訊號間的相關係數,一個非負最小關聯分析法(non-negative least-correlated component analysis)被提出來,以設計訊號源分離矩陣。我們證明在兩個訊號源和兩個混和訊號的情形下,可以獲得一個封閉型式解(closed-form solution)。為分離超過二個以上的訊號源,一個多訊號聯合相關函數被提出來。基於最小化非負訊號間的聯合相關函數,我們提出了一個疊代式體積最大化(iterative volume maximization)方法,其中僅需解決線性規畫(linear programming)問題就能分離出非負訊號源。同時該法的訊號源可辨識性(source identifiability)也被進一步分析與證明。模擬數據和真實生醫數據的實驗結果顯示了所提出的方法在性能上優於現存的基準方法。在本論文的第二部分,我們研究了生物醫學上常見的指數訊號源分析(exponential signal analysis)。指數信號盲抽取的問題出現在許多應用中,包括超音波傳感器陣列處理(ultrasonic sensor array processing),血液流速成像和螢光細胞成像。依據不同應用,訊號源的特定性質可被利用以作為源分離時的限制。基於此想法,我們提出``多重根-多重信號分類”(multiple rooting-multiple signal classification)演算法,以整合訊號源的已知特定性質,進而提高指數訊號源的分離性能。此外對於螢光衰減信號,一個子空間距離數據分割(subspace distance data segmentation)法被提出來以辨認具有相同訊號特徵的興趣區域(region of interest)。藉由主成分分析法(principal component analysis)處理興趣區域中的所有影像像素後,多重根-多重信號分類法可用以獲得更加準確的衰減常數(decay constant)估測。對這些被提出的方法我們以模擬數據進行性能評估以證實其優於現存的基準方法。


    Although significant efforts have been made in developing blind source separation (BSS) techniques, most of the existing methods rely on the foundational assumption that the sources are statistically independent or uncorrelated. However, in many biomedical applications the source signals, which represent interactions of specific proteins and molecules in living cells, may be mutually correlated, leading to the conventional independent component analysis (ICA) not applicable. In view of this, we focus on the blind extraction of correlated signals with specific deterministic properties. Two classes of BSS problems are studied. In the first part of the thesis, the separation of non-negative sources is considered, which could appear in biomedical imaging modalities including dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), X-ray imaging, ultrasonic imaging, and fluorescence microscope imaging, or appear in spectrum signals including nuclear magnetic resonance (NMR) spectrum and infrared (IR) spectrum. By minimizing the correlation coefficient of two non-negative sources, a non-negative least-correlated component analysis ($n$LCA) method is proposed to design the unmixing matrix. We show that a closed-form solution is available for unmixing two mixtures of two sources. For extracting more than two sources, a joint correlation function of multiple signals is proposed to determine the unmixing matrix. Based on minimizing the joint correlation function among the estimated non-negative sources, we propose an iterative volume maximization (IVM) principle which involves solving linear programming problem only for non-negative source extraction. The source identifiability is further discussed and analyzed. Both simulation data and real biomedical data were used to demonstrate its superior performance of the proposed nLCA method over some existing benchmark algorithms. In the second part of the thesis, the exponential signal analysis for biomedical applications is studied. The exponential signal extraction problem arises in many applications including ultrasonic sensor array processing, blood flow imaging, and fluorescence cellular imaging. Depending on the applications, the sources have specific properties that can be used as constraints for source separation. Based on this idea, we propose a multiple rooting technique for multiple signal classification (MR-MUSIC) algorithm, which can integrate the prior information of signals for improving the source extraction performance. Moreover, for fluorescence decay signals, a subspace distance data segmentation (SDDS) is proposed to identify the region of interest (ROI) with the same characteristics. By using principal component analysis (PCA) on all pixel data in the ROI and MR-MUSIC algorithm, an accurate estimation of image signatures, i.e., the decay constants, can be obtained. These proposed methods were evaluated with simulation data to demonstrate their superior performance over several existing benchmark methods.

    Chinese Abstract ii Abstract iii Acknowledgments v List of Figures viii 1 Introduction 1 1.1 Extraction of Non-negative Sources . . . . . . . . . . . . . . . . . . . 2 1.2 Extraction of Exponential Signals . . . . . . . . . . . . . . . . . . . . 5 2 Non-negative Least-correlated Analysis 10 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Proposed nLCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 nLCA for the case M = N = 2 . . . . . . . . . . . . . . . . . 17 2.3.2 nLCA-Edge Search . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 nLCA-IVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4 Principal Component Analysis in nLCA . . . . . . . . . . . . 38 2.4 Simulations and Experiments . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 Experiment 1: Human face image separation . . . . . . . . . . 41 2.4.2 Experiment 2: Infrared spectra decomposition . . . . . . . . . 44 2.4.3 Experiment 3: Dual-energy X-ray image decomposition . . . . 45 2.4.4 Experiment 4: Analyzing fluorescence microscopy signals . . . 47 2.4.5 Experiment 5: Contrast agent perfusion image extraction . . . 48 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Subspace-based Exponential Signal Analysis with Prior Information 55 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Ultrasonic Array Signal Processing . . . . . . . . . . . . . . . 56 3.1.2 Estimation of Blood Flow Velocity Based on Doppler Effect . 58 3.1.3 Fluorescence Lifetime Imaging Microscopy . . . . . . . . . . . 61 3.2 Reviews of Existing Methods . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Root-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.2 ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 MR-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2 SDDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.1 Simulation 1: DOA estimation . . . . . . . . . . . . . . . . . . 84 3.4.2 Simulation 2: Estimation of blood flow velocity . . . . . . . . 86 3.4.3 Simulation 3: Global analysis of FLIM . . . . . . . . . . . . . 86 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Conclusions and Future Works 89 A Proofs in Chapter 2 91 A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.2 Proof of (2.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 A.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.4 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.5 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.6 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.7 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 B Signal Model in DCE-MRI 99 C Cadzow Method 102 D Average Linkage Clustering Algorithm 105 Bibliography 107 Publication List of The Author 114

    [1] Y. Wang, J. Xuan, R. Srikanchana, and P. L. Choyke, “Modeling and reconstruction of mixed functional and molecular patterns,” International Journal of Biomedical Imaging, vol. 2006, pp. 1–9, 2006, article ID 29707.

    [2] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan 2002.

    [3] M. Mjolsness and D. DeCoste, “Machine learning for science: State of the art
    and future prospects,” Science, vol. 293, pp. 2051–2055, 2001.

    [4] H. R. Herschman, “Molecular imaging: Looking at problems, seeing solutions,”
    Science, vol. 302, pp. 605–608, 2003.

    [5] A. B. D. Nuzillard, “Blind source separation and analysis of multispectral astronomical images,” Astron. Astrophys Suppl. Ser. 147, pp. 129–138, 2000.

    [6] S. A. Astakhov, H. Stogbauer, A. Kraskov, and P. Grassberger, “Monte Carlo algorithm for least dependent non-negative mixture decomposition,” Anal. Chem., vol. 78, no. 5, pp. 1620–1627, 2006.

    [7] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. New Jersey: Prentice-Hall, 2005.

    [8] D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: From microscope to clinic,” Nature Medicine, vol. 9, no. 6, pp. 713–725, 2003.

    [9] M. E. Dickinson, G. Bearman, S. Tilie, R. Lansford, and S. E. Fraser, “Multispectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” Biotechniques, vol. 31, no. 6, pp. 1272–1278, Dec. 2001.

    [10] D. Stephens, Cell Imaging: Method Express. UK: Scion Publishing, 2006.

    [11] A. Rabinovich, S. Agarwal, S. Krajewski, J. C. Reed, J. H. Price, and S. Belongie, “Accuracy of unsupervised spectral decomposition for densitometry of histological sections,” to appear in IEEE Trans. Medical Imaging.

    [12] M. Zhao, M. Yang, X.-M. Li, P. Jiang, E. Baranov, S. Li, M. Xu, S. Penman, and R. M. Hoffman, “Tumor-targeting bacterial therapy with amino acid auxotrophs of gfp-expressing salmonella typhimurium,” Proc. Natl. Acad. Sci., vol. 102, pp. 755–760, 2005.

    [13] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. New York: John Wiley, 2001.

    [14] E. Oja and M. Plumbley, “Blind separation of positive sources by globally convergent gradient search,” Neural Computation, vol. 16, pp. 1811–1825, 2004.

    [15] D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp. 788–791, Oct. 1999.

    [16] J. S. Lee, D. D. Lee, S. Choi, K. S. Park, and D. S. Lee, “Non-negative matrix factorization of dynamic images in nuclear medicine,” IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2027–2030, 2001.

    [17] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and applications for approximate nonnegative matrix factorization,” Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 155–173, 2007.

    [18] W. Liu, N. Zheng, and X. Lu, “Nonnegative matrix factorization for visual coding,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, April 6-10, 2003, pp. 293–296.

    [19] R. Zdunek and A. Cichocki, “Nonnegative matrix factorization with constrained
    second-order optimization,” Signal Processing, vol. 87, no. 8, pp. 1904–1916, 2007.

    [20] P. Hoyer, “Nonnegative matrix factorization with sparseness constraints,” J. Machine Learning Research, vol. 5, pp. 1457–1469, 2004.

    [21] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. Jensen, “Theorems on positive data: On the uniqueness of NMF,” Computational Intelligence and Neuroscience, vol. 2008, pp. 1–9, 2008, article ID 764206.

    [22] J. Mansfield, K. Gossage, C. Hoyt, and R. Levenson, “Autofluorescence removal, multiplexing, and automated anaysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt., vol. 10, no. 4, pp. 1–9, 2005, article ID 041207.

    [23] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for blind separation of non-negative sources,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5120-5134, Oct. 2008.

    [24] F.-Y. Wang, C.-Y. Chi, T.-H. Chan, and Y. Wang, “Blind separation of positive dependent sources by non-negative least-correlated component analysis,” in Proc. IEEE International Workshop on Machine Learning for Signal Processing, Maynooth, Ireland, Sept. 6-8, 2006, pp. 73–78.

    [25] M. E. Winter, “N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE Conf. Imaging Spectrometry, Pasadena, CA, Oct. 1999, pp. 266–275.

    [26] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

    [27] C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Quyang, “A new growing method
    for simplex-based endmember extraction algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804–2819, Oct. 2006, Oct. 2006.

    [28] A. Webb, Introduction to Biomedical Imaging, 1st ed. New Jersey: John Wiley, 2003.

    [29] F. Viola, M. A. Ellis, and W. F. Walker, “Time-domain optimized near-field
    estimator for ultrasound imaging: initial development and results,” IEEE Trans. Medical Imaging, vol. 27, pp. 99–110, Jan. 2008.

    [30] J. J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communication, New Jersey: Prentice Hall, Inc, 1999.

    [31] A. P. Dhawan, Medical Image Analysis. Hoboken, New Jersey: John Wiley and Sons, Inc, 2003.

    [32] Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phaseresolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,”Optics Letters, vol. 25, no. 2, pp. 114–116.

    [33] M. S. Gee, H. M. Saunders, J. C. Lee, and et al., “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Research, vol. 61, p. 2974V2982, Apr. 2001.

    [34] C. Kargel, G. Plevnik, B. Trummer, and M. F. Insana, “Doppler ultrasound systems designed for tumor blood flow imaging,” IEEE Trans. Ins. and Mea., vol. 53, no. 2, pp. 524–536, Apr. 2004.

    [35] D. J. Stephens and V. J. Allan, “Light microscopy techniques for living cell imaging,” Science, vol. 300, pp. 82–86, Apr. 2003.

    [36] C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence Lifetime Imaging Microscopy”, Chapter 24, Methods in Cell Biology. Philadelphia: Elsevier Inc., 2007, vol. 81.

    [37] P. J. Tadrous, J. Siegel, P. M. French, S. Shousha, E. Lalani, and G. W. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathology, vol. 199, no. 3, pp. 309–317, 2003.

    [38] K. Sekihara, S. S. Nagarajan, D. Poeppel, S. Miyauchi, N. Fujimaki, H. Koizumi, and Y. Miyashita, “Estimating neural sources from each time-frequency component of magnetoencephalographic data,” IEEE Trans. Biomed., Eng., vol. 47, pp. 642–653, 2000.

    [39] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” Signal Processing Magazine, IEEE, vol. 13, pp. 67–93, May 1996.

    [40] T. M. Moon andW. C. Stirling, Mathematical Methods and Algorithms for Signal Processing. New Jersey: Prentice-Hall, 2000.

    [41] R. Roy and T. Kailath, “ESPRIT–estimation of signal parameters via rotational invariance technique,” IEEE Trans. Acoust. Speech Signal Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

    [42] F. W. Kremkau, Diagnostic Ultrasound Principle and Instruments. Philadelphia: Saunders, 1995.

    [43] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing. New York: McGraw-Hill, 1999.

    [44] S. V. Huffel, H. Chen, C. Decanniere, and P. V. Hecke, “Algorithm for time domain NMR data fitting based on total least squares,” J. Magn. Reson., vol. A110, pp. 228–2377, 1994.

    [45] J.-M. Papy, L. D. Lathauwer, and S. V. Huffel, “A shift invariance-based order selection technique for exponential data modelling,” IEEE Signal Process. Lett., vol. 14, no. 7, pp. 473–476, Jul. 2007.

    [46] T. Laudadio, Y. Selen, L. Vanhamme, P. Stoica, P. van Hecke, and S. van Huffel, “Subspace-based MRS data quantitation of multiplets using prior knowledge,” J. Magn. Reson., vol. 168, pp. 53–65, May 2004.

    [47] A. Prieto, C. G. Puntonet, and B. Prieto, “A neural learning algorithm for blind separation of sources based on geometric properties,” Signal Processing, vol. 64, pp. 315–331, 1998.

    [48] P. Santago and H. D. Gage, “Statistical models of partial volume effect,” IEEE Trans. Image Processing, vol. 4, no. 11, pp. 1531–1540, Nov. 1995.

    [49] D. Stein, S. Beaven, L. Hoff, E. Winter, A. Schaum, and A. Stocker, “Anomaly
    detection from hyperspectral imagery,” IEEE Signal Process. Mag., vol. 19, no. 1,
    pp. 58–69, Jan. 2002.

    [50] M. S. Bazaraa, H. D. Sherall, and C. M. Shetty, Nonlinear Programming: Theory
    and Algorithms, 2nd ed. New York: John Wiley, 1993.

    [51] S. Lang, Undergraduate Analysis, 2nd ed. New York: Springer-Verlag, 1983.

    [52] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 3rd ed. New
    Jersey: Prentice-Hall, 1997.

    [53] I. J. Lustig, R. E. Marsten, and D. F. Shanno, “Interior point methods for linear
    programming: Computational state of the art,” ORSA Journal on Computing, vol. 6, no. 1, pp. 1–14, 1994.

    [54] D. P. D. C. B. Barber and H. Huhdanpaa, “The quickhull algorithm for convex
    hulls,” ACM Trans. Mathematical Software, vol. 22, pp. 469–483, Dec. 1996.

    [55] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
    New York: Springer, 2001.

    [56] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge Univ.
    Press, 1985.

    [57] P. Tichavsk´y and Z. Koldovsk´y, “Optimal pairing of signal components separated by blind techniques,” IEEE Signal Process. Lett., vol. 11, no. 2, pp. 119–122, Feb. 2004.

    [58] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing. New
    York: John Wiley, 2002.

    [59] K. Suzuki, R. Engelmann, H. MacMahon, and K. Doi, “Virtual dual-energy
    radiography: Improved chest radiographs by means of rib suppression based on a massive training artificial neural network (MTANN),” Radiology, vol. 238, 2006, available online: http://suzukilab.uchicago.edu/research.htm.

    [60] A. R. Padhani and J. E. Husband, “Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies,” Clinical Radiology, vol. 56, no. 8, pp. 607–620, 2001.

    [61] T. F. Coleman and Y. Li, “A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables,” SIAM Journal on Optimization, vol. 6, no. 4, pp. 1040–1058, 1996.

    [62] G. Carneiro, B. Georgescu, S. Good, and D. Comaniciu, “Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree,” IEEE Trans. medical image, vol. 27, no. 9, pp. 2381–2390, Sep. 2008.

    [63] J.-F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 1606–1613, 2007.

    [64] F. Vignon and M. R. Burcher, “Capon beamforming in medical ultrasound imaging with focused beams,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, no. 3, pp. 619–628, March 2008.

    [65] B. M. Asl and A. Mahloojifar, “Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 57, no. 11, pp. 2381–2390, Nov. 2010.

    [66] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum, 1999.

    [67] J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 4, pp. 835–845, Jul./Aug. 2005.

    [68] K. Dowling et al, “Whole-field fluorescence lifetime imaging with picosecond resolution using ultrafast 10-khz solid-state amplifier technology,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 2, pp. 370–375, Mar./Apr. 1998.

    [69] Tony Ng et al, “Imaging protein kinase C activation in cells,” Science, vol. 283, pp. 2085–2089, Mar. 1999.

    [70] V. Raicu et al, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nature photonics, vol. 3, pp. 107–113, Feb. 2009.

    [71] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, and E. Sorbellini, “Fluorescence lifetime imaging: An application to the detection of skin tumors,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 4, pp. 923–929, Jul./Aug. 1997.

    [72] S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, “A comparison between a time domain and continue wave small animal optical imaging system,” IEEE Trans. Medical Imaging, vol. 27, no. 1, pp. 58–63, Jan. 2008.

    [73] K. V. Kuchibhotla, C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai, “Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice,” Science, vol. 323, pp. 1211–1215, Feb. 2009.

    [74] P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic,
    “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain flim,” in Proc. SPIE, vol. 5700, 2005, pp. 171–181.

    [75] H. E. Grecco, P. Roda-Navarro, and P. J. Verveer, “Global analysis of time correlated single photon counting FRET-FLIM data,” Optics express, vol. 17, no. 8, pp. 6493–6508, Apr. 2009.

    [76] H. Barkhuysen, R. de Beer, and D. van Ormondt, “Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance
    signals,” J. Magn. Reson., vol. 73, pp. 553–557, 1987.

    [77] G. H. Golub and C. F. VanLoab, Matrix Computations. Baltimore, MD.: John
    Hopkins University Press, 1989.

    [78] W. Qiu, Y. Hua, and K. Abed-Meraim, “A subspace method for the computation
    of the gcd of polynomials,” Automatica, vol. 33, no. 4, pp. 741–743, Apr. 1997.

    [79] Y. Bresler and A. Macovski, “On the number of signals resolvable by a uniform
    linear array,” IEEE Trans. ASSP, vol. ASSP-34, pp. 1361–1375, 1986.

    [80] J. A. Cadzow, “Signal enhancement – a composite property mapping algorithm,”
    IEEE Trans. ASSP, vol. 36, no. 1, pp. 49–62, Jan. 1988.

    [81] [Online]. Available: http://www.lambert-instruments.com/technologies/
    1_english/4_technologies/1_flim, fluorescence lifetime imaging microscopy

    [82] S. Theodoridis and K. Koutroumbas, Pattern Recognition. MA., USA: Academic
    Press, 2009.

    [83] P. H. Schonemann, “A generalized solution of the orthogonal procrustes problem,” Psychometrika, vol. 31, no. 1.

    [84] C.-Y. Chi, C.-C. Feng, C.-H. Chen, and C.-Y. Chen, Blind Equalization and
    System Identification. London: Springer-Verlag, 2006.

    [85] P. S. Tofts and et al., “Estimating kinetic parameters from dynamic contrast enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols,” Journal of Magnetic Resonance Imaging, vol. 10, pp. 223–232, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE