研究生: |
王沛雅 Wang, Pei-Ya |
---|---|
論文名稱: |
在流體力學模擬中建立被震波加速之宇宙射線的模型 Modeling shock-accelerated cosmic rays in hydrodynamic simulations |
指導教授: |
楊湘怡
Yang, Hsiang-Yi Karen |
口試委員: |
潘國全
Pan, Kuo-Chuan 薛熙于 Schive, Hsi-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 天文研究所 Institute of Astronomy |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 流體力學模擬 、宇宙射線 、擴散衝擊加速 、尋找震波算法 、震波注入算法 |
外文關鍵詞: | hydrodynamic simulations, cosmic rays, diffusive shock acceleration, shock-finding algorithm, shock-injection algorithm |
相關次數: | 點閱:56 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
宇宙射線(cosmic rays, CRs)在星系及星系團的形成與演化扮演著重要的角色,他們可以透過在天體物力的非碰撞震波(collisionless shock)中的擴散衝擊加速機制(diffusive shock acceleration, DSA)來加速粒子。除此之外,透過物理特性在震波中的跳躍條件來實施震波尋找演算法並且評估此方法的效益是非常重要也具有挑戰性的。因此,我們的研究主要是在具有宇宙射線模組的FLASH代碼中,並在子網格模型上注入宇宙射線的能量,此能量多寡則是透過擴散加速機制的傳遞來決定。我們使用二維Sedov爆炸以及Sod震波管測試問題來個別產生由能量所驅動的球形震波以及平面震波。在我們的研究中可以透過震波尋找演算法有效的找到震波位置及震波表面、以及透過溫度特型的跳躍條件來估算馬赫數,並且相較於壓力特性的跳躍條件較為準確。而此代碼可以廣泛運用在各項包含模擬宇宙射線的系統中,像是超新星爆炸遺跡、電波星系以及銀河風等。
Cosmic rays (CRs), which are relativistic charged particles accelerated via diffusive shock acceleration (DSA) within collisionless shocks, play an important role in formation and evolution of galaxies and clusters. For modeling shock-accelerated CRs in hydrodynamic simulations, it is crucial and challenging to implement a shock-finding algorithm based on jump conditions across the shocks and evaluate their performance. Therefore, our aim of this study is to implement a subgrid model for CR injection due to shock acceleration in the CR module in the FLASH code and estimate how much dissipated energy can be transferred to CRs through DSA. In addition, we use 2D Sedov-explosion and Sod shock-tube test problems to verify our algorithms and to study the influence of CRs in energy-driven spherical shocks and panel shocks, respectively. In our simulations, we verified that our shock-finding algorithm can effectively find locations of the shock zone and shock surface. Criterion based on temperature jumps predicts more accurate Mach numbers than pressure jumps. This code will have a broad application to the modeling of CRs in various systems, including supernova remnants, radio galaxies, and galactic winds.
[1] Abraham Achterberg, Yves A. Gallant, John G. Kirk, and Axel W. Guthmann. Particle acceleration by ultrarelativistic shocks: theory and simulations. Monthly Notices of the Royal Astronomical Society, 328(2):393–408, December 2001.
[2] M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, and et al. GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies. The Astrophysical Journal, 717(1):L71–L78, July 2010.
[3] W. I. Axford, E. Leer, and G. Skadron. The Acceleration of Cosmic Rays by Shock Waves. 11:132, January 1977.
[4] Ricarda S. Beckmann, Yohan Dubois, Alisson Pellissier, Valeria Olivares, Fiorella L. Polles, Oliver Hahn, Pierre Guillard, and Matthew D. Lehnert. Cosmic rays and thermal instability in self-regulating cooling flows of massive galaxy clusters. Astronomy and Astrophysics, 665:A129, September 2022.
[5] A. R. Bell. The acceleration of cosmic rays in shock fronts – I. Monthly Notices of the Royal Astronomical Society, 182(2):147–156, February 1978.
[6] R. D. Blandford and J. P. Ostriker. Particle acceleration by astrophysical shocks. The Astrophysical Journal, 221:L29–L32, April 1978.
[7] C. M. Booth, Oscar Agertz, Andrey V. Kravtsov, and Nickolay Y. Gnedin. Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. The Astrophysical Journal, 777(1):L16, November 2013.
[8] D. Breitschwerdt, J. F. McKenzie, and H. J. Voelk. Galactic winds. I. Cosmic ray and wave driven winds from the galaxy. Astronomy Astrophysics, 245:79, May 1991.
[9] Gianfranco Brunetti and Thomas W. Jones. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. International Journal of Modern Physics D, 23(4):1430007–98, March 2014.
[10] D. Caprioli and A. Spitkovsky. Simulations of ion acceleration at nonrelativistic shocks. i. acceleration efficiency. The Astrophysical Journal, 783(2):91, March 2014.
[11] Damiano Caprioli, Ana-Roxana Pop, and Anatoly Spitkovsky. Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks. The Astrophysical Journal, 798(2):L28, January 2015.
[12] Yohan Dubois, Benoˆıt Commer¸con, Alexandre Marcowith, and Loann Brahimi. Shock-accelerated cosmic rays and streaming instability in the adaptive mesh refinement code Ramses. Astronomy and Astrophysics - A&A, 631:A121, November 2019.
[13] R. Farber, M. Ruszkowski, H. Y. K. Yang, and E. G. Zweibel. Impact of Cosmic-Ray Transport on Galactic Winds. The Astrophysical Journal, 856(2):112, April 2018.
[14] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical Journal, 131(1):273–334, November 2000.
[15] Fulai Guo and William G. Mathews. Cosmic-ray-dominated AGN Jets and the Formation of X-ray Cavities in Galaxy Clusters. The Astrophysical Journal, 728(2):121, February 2011.
[16] Xinyi Guo, Lorenzo Sironi, and Ramesh Narayan. Non-thermal electron acceleration in low mach number collisionless shocks. i. particle energy spectra and acceleration mechanism. The Astrophysical Journal, 794(2):153, October 2014.
[17] Ji-Hoon Ha, Dongsu Ryu, Hyesung Kang, and Allard Jan van Marle. Proton acceleration in weak quasi-parallel intracluster shocks: Injection and early acceleration. The Astrophysical Journal, 864(2):105, September 2018.
[18] H.E.S.S. Collaboration, Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Balzer, A., Barnacka, A., Barres de Almeida, U., and et al. A new snr with tev shell-type morphology: Hess j1731-347. Astronomy and Astrophysics - A&A, 531:A81, July 2011.
[19] F. Holguin, M. Ruszkowski, A. Lazarian, R. Farber, and H. Y. K. Yang. Role of cosmic-ray streaming and turbulent damping in driving galactic winds. Monthly Notices of the Royal Astronomical Society, 490(1):1271–1282, November 2019.
[20] K. Koyama, R. Petre, E. V. Gotthelf, U. Hwang, M. Matsuura, M. Ozaki, and S. S. Holt. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378(6554):255–258, November 1995.
[21] G. F. Krymskii. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akademiia Nauk SSSR Doklady, 234:1306–1308, June 1977.
[22] Yen-Hsing Lin, H. Y. Karen Yang, and Ellis R. Owen. Evolution and feedback of AGN jets of different cosmic ray composition. Monthly Notices of the Royal Astronomical Society, 520(1):963–975, March 2023.
[23] Francesco Miniati, Dongsu Ryu, Hyesung Kang, T. W. Jones, Renyue Cen, and Jeremiah P. Ostriker. Properties of Cosmic Shock Waves in Large-Scale Structure Formation. The Astrophysical Journal, 542(2):608–621, October 2000.
[24] C. Pfrommer, R. Pakmor, K. Schaal, C. M. Simpson, and V. Springel. Simulating cosmic ray physics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 465(4):4500–4529, November 2016.
[25] C. Pfrommer, V. Springel, T. A. Enßlin, and M. Jubelgas. Detecting shock waves in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 367(1):113–131, March 2006.
[26] Vicent Quilis, Jos´e M, . Ib´a˜nez, and Diego S´aez. On the Role of Shock Waves in Galaxy Cluster Evolution. The Astrophysical Journal, 502(2):518– 530, August 1998.
[27] Mateusz Ruszkowski, H. Y. K. Yang, and Ellen Zweibel. Global Simulations of Galactic Winds Including Cosmic-ray Streaming. The Astrophysical Journal, 834(2):208, January 2017.
[28] Dongsu Ryu, Hyesung Kang, and Ji-Hoon Ha. A diffusive shock acceleration model for protons in weak quasi-parallel intracluster shocks. The Astrophysical Journal, 883(1):60, September 2019.
[29] Dongsu Ryu, Hyesung Kang, Eric Hallman, and T. W. Jones. Cosmological shock waves and their role in the large-scale structure of the universe. The Astrophysical Journal, 593(2):599, August 2003.
[30] Kevin Schaal and Volker Springel. Shock finding on a moving mesh – i. shock statistics in non-radiative cosmological simulations. Monthly Notices of the Royal Astronomical Society, 446(4):3992–4007, December 2014.
[31] Lorenzo Sironi and Anatoly Spitkovsky. Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity. The Astrophysical Journal, 698(2):1523–1549, June 2009.
[32] Anatoly Spitkovsky. Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In Tomasz Bulik, Bronislaw Rudak, and Grzegorz Madejski, editors, Astrophysical Sources of High Energy Particles and Radiation, volume 801 of American Institute of Physics Conference Series, pages 345–350, November 2005.
[33] Anatoly Spitkovsky. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? The Astrophysical Journal, 682(1):L5, July 2008.
[34] Volker Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Monthly Notices of the Royal Astronomical Society, 401(2):791–851, January 2010.
[35] D. Wittor, F. Vazza, D. Ryu, and H. Kang. Limiting the shock acceleration of cosmic ray protons in the ICM. Monthly Notices of the Royal Astronomical Society, 495(1):L112–L117, June 2020.
[36] H. Y. K. Yang, M. Ruszkowski, P. M. Ricker, E. Zweibel, and D. Lee. The fermi bubbles: Supersonic active galactic nucleus jets with anisotropic cosmicray diffusion. The Astrophysical Journal, 761(2):185, December 2012.
[37] H. Y. Karen Yang, Massimo Gaspari, and Carl Marlow. The Impact of Radio AGN Bubble Composition on the Dynamics and Thermal Balance of the Intracluster Medium. The Astrophysical Journal, 871(1):6, January 2019.