研究生: |
魏得育 Te-Yu Wei |
---|---|
論文名稱: |
二氧化矽氣凝膠與複合氣凝膠之製備與物理性質探討 Preparation and physical properties of silica-based aerogels and composite aerogels |
指導教授: |
呂世源
Shih-Yuan Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 氣凝膠 、二氧化矽 、二氧化鈦 、二氧化錫 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究的對象分為兩大部分,第一為二氧化矽氣凝膠的製備,第二為金屬氧化物-二氧化矽複合氣凝膠的製備與物理性質的探討。在二氧化矽氣凝膠的製備上,我們採用表面改質的方式,再配合常壓乾燥進行,如此可以大大的降低傳統使用超臨界乾燥所需要的極高成本。以過去常壓乾燥的文獻做一個基礎,開發出多次改質的製程程序,製備出具有低密度、高孔隙率和低熱傳導係數的二氧化矽氣凝膠,其中孔隙率高達97%,熱傳導係數低達0.036W/m-K,物理性質遠比過去文獻中,同樣利用常壓乾燥製程所製備之二氧化矽氣凝膠來的好。另外也針對其它物理化學性質做分析與比較,如比表面積、疏水性和表面官能基檢測,由檢測分析的結果得知,經過多次改質的二氧化矽氣凝膠,因為表面官能基充份的反應形成疏水的鍵結,所以在常壓乾燥的過程中具有較低的體積收縮率,獲得的二氧化矽氣凝膠孔洞體積較大,孔隙率因此大大的提升,進而降低了熱傳導係數,經過接觸角的量測,發現疏水角度達143o。另外也針對製備參數進行探討,以EtOH/TEOS為8的製備參數下具有較佳的物理性質,改變溶膠-凝膠反應的pH值探討中,發現以高pH值下的製程製備之二氧化矽氣凝膠具有較大的孔洞體積,也因此其孔隙率更大,熱傳導係數更是低達0.03W/m-K。
在金屬氧化物-二氧化矽的複合氣凝膠研究上,我們製備出兩種不同種類的複合氣凝膠,其中包含了二氧化鈦-二氧化矽複合氣凝膠、二氧化錫-二氧化矽複合氣凝膠。二氧化鈦-二氧化矽複合氣凝膠的製備上採用粉體直接添加進行溶膠-凝膠反應,配合開發之多次改質常壓製程技術製備而得,並針對添加後的複合氣凝膠進行物理性質分析,在本研究上,我們成功的製備出常溫熱傳導係數0.04W/m-K的複合氣凝膠塊材,改善了過去文獻上,以粉體為主的製程,並具有些微的疏水性,經過化學的分析,二氧化鈦粉體是以物理鑲嵌的方式存在於氣凝膠中,與二氧化矽無化學上的鍵結。
二氧化錫-二氧化矽複合氣凝膠研究上,主要是針對複合氣凝膠在PL發光的特性上做探討,進而計算量子產率與檢測光觸媒效應做比較。採用兩種不同的製備方式,在溶膠-凝膠法的製備方式下,在多步驟的改質程序中會損耗大量的前驅物,以添加最多莫耳數(0.1mole)的二氧化錫前驅物所製備的複合氣凝膠,其量子產率最佳。熱處理溫度上升,會因為晶體成長較佳,結晶性較好,而獲得較強的PL發光與較大的量子產率,其中以高溫700oC下所製備的複合氣凝膠,其中二氧化錫所貢獻的量子產率為0.0086為最佳,且在光觸媒的檢測上比純二氧化矽氣凝膠具有12%的轉化率提升。利用液相沉積法所製備之二氧化錫-二氧化矽複合氣凝膠在PL發光上的表現比以溶膠-凝膠法製備的複合氣凝膠強許多,因為其塞填的量遠大於溶膠-凝膠法。在熱處理溫度的影響上,因為結晶性較佳與晶粒較小而接觸面積大,我們發現熱處理溫度500oC下具有較強的PL發光強度,二氧化錫貢獻之量子產率也較大,約0.0157,對比純二氧化矽氣凝膠具有77%的光觸媒轉化率的提升。
Monolithic silica aerogels with thermal conductivities as low as 0.036 W/m-K and porosities as high as 97% were successfully prepared with ambient pressure drying through a multiple surface modification approach. The tetraethoxysilane (TEOS)-derived wet gel was made hydrophobic with multiple surface treatments of trimethylchlorosilane (TMCS) and dried under ambient pressure. It was found that the contact angle could reach 143o after multiple surface modifications, which was higher than the products prepared with the single surface modification procedure. This multiple surface modification procedure led to lower volume shrinkages during the ambient pressure drying and the silica aerogels thus obtained possessed higher porosities. As to the effect of the solution pH, it was found that higher pH resulted in higher pore volumes and lower thermal conductivities. When the pH was controlled at 10~11, silica aerogels with thermal conductivities as low as 0.03W/m-K were obtained.
In this research, metal oxide-SiO2 composite aerogels were also prepared and studied. Monolithic TiO2-SiO2 composite aerogels with thermal conductivities as low as 0.04W/m-K together with better mechanical strengths were successfully prepared with the multiple surface modification procedure at ambient pressure drying.
SnO2-SiO2 composite aerogels were also prepared and studied for their photoluminescence and photocatalysis performance. In the sol-gel reaction procedure, it was found that higher incorporation concentrations of SnO2 precursor produced SnO2-SiO2 composite aerogels with higher quantum yields of PL because of the more well crystallized SnO2 in the aerogels. The SnO2-SiO2 composite aerogels heat-treated at higher temperatures exhibited higher quantum yields of PL and higher photocatalytic conversions, because the crystal growth achieved in heat treatment of higher temperatures was more complete than in lower temperatures. For SnO2-SiO2 composite aerogels produced from the liquid deposition procedure, products of heat treatment at 500oC gave higher quantum yields of PL and photocatalytic efficiency than produced of 400oC, due again to the better crystallinity. For products obtained at heat treatment temperature of 700oC, the quantum yields of PL was however lower than those prepared at 500oC, because the grain size of tin oxide became larger and the specific surface area thus was lower.
1. M. Andrew and L. H. Stephen, “An overview of semiconductor photocatalysis”, Journal of photochemistry and photobiology A, 108, 1 (1997).
2. M. J. Annen, B. E. Yoldas, J. Bostaph, “Chemical Engineering of Aerogel Morphology Formed under Nonsupercritical Conditions for Thermal Insulation”, Chemistry of Materials, 12, 2475-2484 (2000)
3. T. F. Baumann, S. O. Kucheyev, A. E. Gash, J. H. Satcher, “Facile Synthesis of a Crystalline, High-Surface-Area SnO2 Aerogel”, Advanced Materials, 17, 1546-1548 (2005)
4. C. J. Brinker, S. S. Prakash, A.J. Hurd, “Silica Aerogel Films at Ambient Pressure“, Journal of Non-Crystalline Solids, 190, 264-275 (1995)
5. S. L. Brock, J. L. Mohanan, L. U. Arachchige, “Porous Semiconductor Chalcogenide Aerogels”, Science, 307,397-400 (2005)
6. S. Y. Choi, S. K. Kang, “Synthesis of Low-Density Silica Gel at Ambient Pressure: Effect of Heat Treatment”, Journal of Materials Science, 35, 4971-4976 (2000)
7. A. Fujishima, K. Honda, ”Electrochemical photolysis of water at a semiconductor electrode”, Nature, 37, 238-241 (1972).
8. F. Gu, S. F. Wang, M. K. Lu, G.J. Zhou, D. Xu, D. R. Yuan, ”Phtoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method”, Journal of Physical Chemistry B, 108, 8119-8123 (2004)
9. D. Haranath, R. A. Venkateswara, P. B. Wagh, “Influence of DCCAs on Optical Transmittance and Porosity Properties of TMOS Silica Aerogels”, Journal of Porous Materials, 6(1), 55-62 (1999)
10. I. I. Hinic, G. M. Stanisic, Z. V. Popovic, “Photoluminescence Properties of Silica Aerogel During Sintering Process”, Journal of Sol-Gel Science and Technology, 14, 281-289 (1999)
11. Hitachi Scientific Instrument Technical Data, FL No. 24.
12. N. Husing, U. Schubert, “Aerogels-Airy Materials: Chemistry, Structure, and Properties”, Angew. Chem. Int. Ed., 37, 22-45 (1998)
13. S. H. Hyun, G. S. Kim, “Synthesis and Characterization of Silica Aerogel Films for Inter-Metal Dielectrics via Ambient Dring”, Thin Solid Films, 460, 190-200 (2004)
14. S. H. Hyun, C. J. Lee, G.. S. Kim, “Synthesis of Silica Aerogels from Waterglass via New Modified Ambient Drying”, Journal of Materials Science, 37, 2237-2241 (2002)
15. S. O. Kucheyev, J. Biener, Y. M. Wang, T. F. Baumann, K. J. Wu, T. V. Buuren, A. V. Hamza, J. H. Satcher, ”Atomic Layer Deposition of ZnO on Ultralow-density Nanoporous Silica Aerogel Monoliths”, Applied Physics Letters, 86, 083108 (2005)
16. Y. G. Kwon, S.Y. Choi, “Ambient-Dried Silica Aerogel Doped with TiO2 Powder for Thermal Insulation”, Journal of Materials Science, 35, 6075-6079 (2000)
17. J. Lin, K. Baerner, “Tunable Photoluminescence in Sol-Gel derived Silica xerogels”, Materials Letters, 46, 86-92 (2000)
18. A. L. Linsebigler, G. Lu and J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chemical reviews, 95, 735(1995).
19. M. Liu, F. Chen, Z. Shi, “Preparation of Mesoporous SnO2-SiO2 Composite as Electrodes for Lithium Batteries”, Chem. Commum., 2095-2096, (2000)
20. M. K. Lu, F. Gu, S. F. Wang, G. J. Zhou, D. Xu, D. R. Yuan, “Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method“, Journal of Physical Chemistry B, 108, 8119-8123 (2004)
21. R. W. Matthews, ”An adsorption water purifier with in situ photocatalytic regeneration”, Journal of catalysis, 113, 549-555(1988).
22. C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, L. D. Zhang, “Enhancement Effect of Photoluminescence in Assemblies of Nano-ZnO Particles/Silica Aerogels“, Journal of Applied Physics, 83(8), 4389-4391 (1998)
23. H. Nakano, O. Ohtani, T. Mitsuoka, Y. Akimoto, H. Nakamura, “Synthesis of Amorphous Silica Nanosheets and Their Photoluminescence”, Journal of American Ceramic Society, 88(12), 3522-3524 (2005)
24. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”, Physical Review B, 45(2) 586-591 (1992)
25. W. Li, H. Probstle, J. Fricke, “Electrochemical Behavior of Mixed CmRF based
Carbon Aerogels as Electrode Materials for Supercapacitors”, Journal of Non-Crystalline Solids, 325, 1-5 (2003)
26. G. M. Pajonk, “Some Applications of Silica Aerogels”, Colloid Polym Sci, 281, 637-651 (2003)
27. A. C. Pierre, G. M. Pajonk, “Chemistry of Aerogels and Their Applications”, Chem. Rev ,102 ,4243-4265 (2002)
28. A. Paleari, N. Chiodini, D. DiMartino, G. Spinolo, “SnO2 nanocrystals in SiO2: A Wide-Band-Gap Quantum-Dot System”, Applied Physics Letters, 81(9), 1702-1704 (2002)
29. H. Probstle, C. Schmitt, J. Fricke, “Button Cell Supercapacitors with Monolithic Carbon Aerogels”, Journal of Power Sources, 105, 189-194 (2002)
30. M. Schmidt, F. Schwertfeger, “Applications for Silica Aerogel Products”, Journal of Non-Crystalline Solids, 225, 364-368 (1998)
31. J. V. Ryan, A. D. Berry, M. L. Anderson, J.W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher, “Electronic connextion to the interior of a mesoporous insulator with nanowires of crystalline RuO2”, Nature, 406, 169-172 (2000)
32. J. M. Schultz, K. I. Jensen, F. H. Kristiansen, ”Development of Windows Based on Highly Insulating Aerogel Glazing,” Journal of Non-Crystalline Solids, 350, 351-357 (2004)
33. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, “Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer”, Adv. Mater., 13(15), 1149-1152 (2001)
34. H. Yokogawa, M. Yokoyama, “Hydrophobic Silica Aerogels”, Journal of Non-Crystalline Solids,186, 23-29 (1995)
35. 王天路, 劉旭峰, ”氧化矽氣凝膠之應用”, 化工資訊與商情, 十二月號六期, 90-96 (2003)
36. 林文發, 周世海, “隔熱材的明星材料”, 化工資訊, 四十八期, 48-53 (2001)
37. 談駿嵩,“超臨界流體的應用”, 科學發展, 359期, 12-17 (2002)
38. 盧偉珠,“高效的金屬氧化物氣凝膠觸媒”, 化工資訊, 四十八期, 58-65 (2001)
39. 羅靖堯,“利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”, 國立成功大學化學研究所碩士論文
40. 陳陵援,“儀器分析”, 三民書局 (1982)
41. 陳宏軍, “氧化鋅奈米粉末之製備與研究”, 私立大同大學材料工程研究所碩士論文
42. 蘇靜怡, “以超分子模板合成中孔結構之二氧化錫”, 國立中山大學材料科學研究所碩士論文
43. http://stardust.jpl.nasa.gov/tech/aerogel.html
44. http://www.aerogel.com/
45. http://eetd.lbl.gov/ECS/aerogels/saphoto.htm