簡易檢索 / 詳目顯示

研究生: 魏得育
Te-Yu Wei
論文名稱: 二氧化矽氣凝膠與複合氣凝膠之製備與物理性質探討
Preparation and physical properties of silica-based aerogels and composite aerogels
指導教授: 呂世源
Shih-Yuan Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 100
中文關鍵詞: 氣凝膠二氧化矽二氧化鈦二氧化錫
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究的對象分為兩大部分,第一為二氧化矽氣凝膠的製備,第二為金屬氧化物-二氧化矽複合氣凝膠的製備與物理性質的探討。在二氧化矽氣凝膠的製備上,我們採用表面改質的方式,再配合常壓乾燥進行,如此可以大大的降低傳統使用超臨界乾燥所需要的極高成本。以過去常壓乾燥的文獻做一個基礎,開發出多次改質的製程程序,製備出具有低密度、高孔隙率和低熱傳導係數的二氧化矽氣凝膠,其中孔隙率高達97%,熱傳導係數低達0.036W/m-K,物理性質遠比過去文獻中,同樣利用常壓乾燥製程所製備之二氧化矽氣凝膠來的好。另外也針對其它物理化學性質做分析與比較,如比表面積、疏水性和表面官能基檢測,由檢測分析的結果得知,經過多次改質的二氧化矽氣凝膠,因為表面官能基充份的反應形成疏水的鍵結,所以在常壓乾燥的過程中具有較低的體積收縮率,獲得的二氧化矽氣凝膠孔洞體積較大,孔隙率因此大大的提升,進而降低了熱傳導係數,經過接觸角的量測,發現疏水角度達143o。另外也針對製備參數進行探討,以EtOH/TEOS為8的製備參數下具有較佳的物理性質,改變溶膠-凝膠反應的pH值探討中,發現以高pH值下的製程製備之二氧化矽氣凝膠具有較大的孔洞體積,也因此其孔隙率更大,熱傳導係數更是低達0.03W/m-K。
    在金屬氧化物-二氧化矽的複合氣凝膠研究上,我們製備出兩種不同種類的複合氣凝膠,其中包含了二氧化鈦-二氧化矽複合氣凝膠、二氧化錫-二氧化矽複合氣凝膠。二氧化鈦-二氧化矽複合氣凝膠的製備上採用粉體直接添加進行溶膠-凝膠反應,配合開發之多次改質常壓製程技術製備而得,並針對添加後的複合氣凝膠進行物理性質分析,在本研究上,我們成功的製備出常溫熱傳導係數0.04W/m-K的複合氣凝膠塊材,改善了過去文獻上,以粉體為主的製程,並具有些微的疏水性,經過化學的分析,二氧化鈦粉體是以物理鑲嵌的方式存在於氣凝膠中,與二氧化矽無化學上的鍵結。
    二氧化錫-二氧化矽複合氣凝膠研究上,主要是針對複合氣凝膠在PL發光的特性上做探討,進而計算量子產率與檢測光觸媒效應做比較。採用兩種不同的製備方式,在溶膠-凝膠法的製備方式下,在多步驟的改質程序中會損耗大量的前驅物,以添加最多莫耳數(0.1mole)的二氧化錫前驅物所製備的複合氣凝膠,其量子產率最佳。熱處理溫度上升,會因為晶體成長較佳,結晶性較好,而獲得較強的PL發光與較大的量子產率,其中以高溫700oC下所製備的複合氣凝膠,其中二氧化錫所貢獻的量子產率為0.0086為最佳,且在光觸媒的檢測上比純二氧化矽氣凝膠具有12%的轉化率提升。利用液相沉積法所製備之二氧化錫-二氧化矽複合氣凝膠在PL發光上的表現比以溶膠-凝膠法製備的複合氣凝膠強許多,因為其塞填的量遠大於溶膠-凝膠法。在熱處理溫度的影響上,因為結晶性較佳與晶粒較小而接觸面積大,我們發現熱處理溫度500oC下具有較強的PL發光強度,二氧化錫貢獻之量子產率也較大,約0.0157,對比純二氧化矽氣凝膠具有77%的光觸媒轉化率的提升。


    Monolithic silica aerogels with thermal conductivities as low as 0.036 W/m-K and porosities as high as 97% were successfully prepared with ambient pressure drying through a multiple surface modification approach. The tetraethoxysilane (TEOS)-derived wet gel was made hydrophobic with multiple surface treatments of trimethylchlorosilane (TMCS) and dried under ambient pressure. It was found that the contact angle could reach 143o after multiple surface modifications, which was higher than the products prepared with the single surface modification procedure. This multiple surface modification procedure led to lower volume shrinkages during the ambient pressure drying and the silica aerogels thus obtained possessed higher porosities. As to the effect of the solution pH, it was found that higher pH resulted in higher pore volumes and lower thermal conductivities. When the pH was controlled at 10~11, silica aerogels with thermal conductivities as low as 0.03W/m-K were obtained.
    In this research, metal oxide-SiO2 composite aerogels were also prepared and studied. Monolithic TiO2-SiO2 composite aerogels with thermal conductivities as low as 0.04W/m-K together with better mechanical strengths were successfully prepared with the multiple surface modification procedure at ambient pressure drying.
    SnO2-SiO2 composite aerogels were also prepared and studied for their photoluminescence and photocatalysis performance. In the sol-gel reaction procedure, it was found that higher incorporation concentrations of SnO2 precursor produced SnO2-SiO2 composite aerogels with higher quantum yields of PL because of the more well crystallized SnO2 in the aerogels. The SnO2-SiO2 composite aerogels heat-treated at higher temperatures exhibited higher quantum yields of PL and higher photocatalytic conversions, because the crystal growth achieved in heat treatment of higher temperatures was more complete than in lower temperatures. For SnO2-SiO2 composite aerogels produced from the liquid deposition procedure, products of heat treatment at 500oC gave higher quantum yields of PL and photocatalytic efficiency than produced of 400oC, due again to the better crystallinity. For products obtained at heat treatment temperature of 700oC, the quantum yields of PL was however lower than those prepared at 500oC, because the grain size of tin oxide became larger and the specific surface area thus was lower.

    總目錄 中文摘要……………………………………………………….............................….I 英文摘要…………………………………………………......................….............III 致謝…………………………………………………......................…........................V 總目錄……………….............................................................................…....……...VI 表目錄………….........................................................................……………....…...IX 圖目錄………............................................................................………………........XI 第一章 序論………………………………………………………................…..…1 1.1 氣凝膠的介紹…………………………………..............…...........………..1 1.2 氣凝膠的製備……………………………………...........…….…..........….2 1.2.1 溶膠-凝膠法………………......…………………..............…….……......2 1.2.2 超臨界乾燥製備氣凝膠............................................................................4 1.2.3 冷凍乾燥製備氣凝膠................................................................................6 1.2.4 常壓乾燥製備氣凝膠................................................................................7 1.2.5 乾燥控制劑製備氣凝膠............................................................................7 1.3 氣凝膠的種類...............................................................................................8 1.3.1 二氧化矽氣凝膠........................................................................................8 1.3.2 金屬氧化物氣凝膠..................................................................................10 1.3.3 有機氣凝膠..............................................................................................11 1.4 氣凝膠的應用.............................................................................................11 1.4.1 低熱傳導係數的應用..............................................................................12 1.4.2 低介電常數的應用..................................................................................13 1.4.3 高比表面積的應用..................................................................................13 1.4.4 低折射率的應用.......... ...........................................................................14 1.5 光觸媒簡介..................................................................................................15 1.5.1 光觸媒基本原理....................................................................................15 1.5.1.1 異相光催化反應...........................................................................15 1.5.1.2 半導體性質...................................................................................15 1.5.1.3 電子轉移與能量轉移的機制.......................................................16 1.5.1.4 半導體光催化反應.......................................................................17 1.5.1.5 表面電子轉移路徑.......................................................................18 1.5.1.6 能帶層相對位置(band-edge position) .........................................19 1.5.1.7 電荷載子捕抓效應(charge carrier trapping) ...............................20 1.5.1.8 表面競爭吸附...............................................................................20 1.5.2 量子產率................................................................................................21 1.6 二氧化錫簡介.............................................................................................21 1.7 研究動機與方向........................................................................................22 第二章 實驗內容...................................................................................................24 2.1 實驗藥品......................................................................................................24 2.2 實驗器材......................................................................................................25 2.3 分析儀器......................................................................................................26 第三章 二氧化矽氣凝膠常壓乾燥製備與物性探討..................................28 3.1 文獻回顧......................................................................................................28 3.1.1 以常壓乾燥製備氣凝膠........................................................................28 3.1.2 氣凝膠熱傳導探討................................................................................31 3.2 實驗方法......................................................................................................33 3.3 結果與討論.................................................................................................35 3.4 結論...............................................................................................................46 第四章 二氧化鈦-二氧化矽複合氣凝膠製備與物性探討......................47 4.1 文獻回顧......................................................................................................47 4.2 實驗方法......................................................................................................50 4.3 結果與討論..................................................................................................52 4.4 結論................................................................................................................56 第五章 二氧化錫-二氧化矽複合氣凝膠製備與光學探討.......................57 5.1 文獻回顧......................................................................................................57 5.2 實驗方法......................................................................................................59 5.3 結果與討論..................................................................................................63 5.4 結論................................................................................................................95 第六章 參考文獻...................................................................................................97 表目錄 表1.1 常用溶劑與二氧化碳之臨界溫度與臨界壓力比較表....................................5 表1.2 二氧化矽氣凝膠的特性....................................................................................9 表3.1 二氧化矽氣凝膠製程莫耳比..........................................................................33 表3.2 不同EtOH/TEOS比值對氣凝膠尺寸大小差異表.........................................36 表3.3 不同EtOH/TEOS比值對氣凝膠物理性質差異表.........................................36 表3.4 不同EtOH/TEOS比值對氣凝膠熱性質差異表............................................37 表3.5 無改質乾凝膠、單次改質與多次改質氣凝膠物性比較表..........................39 表3.6 乾凝膠、單次與多次改質氣凝膠之BET比較表.........................................41 表3.7 不同pH值製備之二氧化矽氣凝膠BET比較表..........................................46 表4.1 二氧化鈦-二氧化矽混成氣凝膠製程莫耳比.................................................50 表5.1 經不同溫度熱處理二氧化錫(0.03mole)-二氧化矽複合氣凝膠之物理性質比較表..........................................................................................................................64 表5.2 經EDS元素分析後所得之各元素比例表.....................................................68 表5.3 二氧化錫(0.03mole)-二氧化矽複合氣凝膠BET數據比較表......................70 表5.4 純二氧化矽氣凝膠於大氣下經不同溫度熱處理後之BET數據比較表.....71 表5.5 二氧化錫(0.05mole)-二氧化矽複合氣凝膠BET數據比較表......................72 表5.6 二氧化錫(0.1mole)-二氧化矽複合氣凝膠BET數據比較表........................73 表5.7 不同熱處理溫度二氧化錫(0.03mole)-二氧化矽複合氣凝膠之量子產率比 較表..............................................................................................................................80 表5.8 不同熱處理溫度二氧化錫(0.03mole)-二氧化矽複合氣凝膠光觸媒轉化率 比較表..........................................................................................................................83 表5.9 不同製程溫度下製備之二氧化錫晶體尺寸..................................................89 表5.10 經液相沉積法製備不同製程溫度下之二氧化錫-二氧化矽複合氣凝膠之BET數據比較表..........................................................................................................90 表5.11 液相沉積法製備之二氧化錫-二氧化矽複合氣凝膠經不同溫度熱處理後之量子產率..................................................................................................................93 表5.12 經由不同方法製備二氧化錫-二氧化矽複合氣凝膠後之BET數據比較表..................................................................................................................................94 圖目錄 圖1.1 二氧化矽TEM圖..............................................................................................2 圖1.2 溶膠-凝膠法製程說明圖...................................................................................2 圖1.3 二氧化矽氣凝膠結構示意圖............................................................................4 圖1.4 二氧化碳三相圖................................................................................................5 圖1.5 超臨界乾燥系統圖............................................................................................6 圖1.6 表面改質化學反應機制圖................................................................................7 圖1.7 乾燥控制劑的添加比較圖................................................................................8 圖1.8 不同的PH下二氧化矽氣凝膠模擬圖.............................................................9 圖1.9 有機氣凝膠化學反應機制圖...........................................................................11 圖1.10 氣凝膠在不同領域上的應用說明圖............................................................12 圖1.11 二氧化矽氣凝膠隔熱窗................................................................................12 圖1.12 碳氣凝膠在電池上的示意圖........................................................................13 圖1.13 具氣凝膠層與不具氣凝膠層OLED之比較圖............................................14 圖1.14 電子轉移和能量轉移的過程........................................................................17 圖1.15 電子電洞的去激發過程................................................................................19 圖1.16 半導體能帶層的相對位置............................................................................20 圖3.1 常壓乾燥製程流程圖......................................................................................28 圖3.2 常壓乾燥之氣凝膠..........................................................................................29 圖3.3 未改質乾凝膠與改質氣凝膠之SEM圖........................................................30 圖3.4 改質氣凝膠與未改質氣凝膠之FT-IR圖......................................................30 圖3.5 各種隔熱材與氣凝膠的熱傳導係數比較圖..................................................31 圖3.6 二氧化矽氣凝膠製備流程圖..........................................................................34 圖3.7 不同EtOH/TEOS比值製備之氣凝膠(a)EtOH/TEOS=6、(b)EtOH/TEOS=8、(c)EtOH/TEOS=13.......................................................................................................35 圖3.8 不同EtOH/TEOS比值之SEM圖(a)EtOH/TEOS=6、(b)EtOH/TEOS=8、(c)EtOH/TEOS=13.......................................................................................................38 圖3.9 不同EtOH/TEOS比值之接觸角圖(a)EtOH/TEOS=6、(b)EtOH/TEOS=8、(c)EtOH/TEOS=13.......................................................................................................39 圖3.10 乾凝膠、單次與多次改質氣凝膠之氮氣吸脫附曲線(a)乾凝膠、(b)單次改質氣凝膠、(c)多次改質氣凝膠(d)超臨界乾燥之二氧化矽氣凝膠..................................................................................................................................40 圖3.11 乾凝膠、單次與多次改質氣凝膠之FTIR比較圖(a)乾凝膠、(b)單次改質氣凝膠、(c)多次改質氣凝膠......................................................................................42 圖3.12單次改質氣凝膠與多次改質氣凝膠接觸角比較圖(a)單次改質氣凝膠、(b)多次改質氣凝膠..........................................................................................................42 圖3.13 二氧化矽氣凝膠C-NMR圖.........................................................................43 圖3.14 二氧化矽氣凝膠Si-NMR圖.........................................................................43 圖3.15 二氧化矽乾凝膠Si-NMR圖.........................................................................44 圖3.16 不同pH值製備之二氧化矽氣凝膠SEM圖(a)pH=8~9、(b)pH=9~10..........45 圖3.17不同pH值製備之二氧化矽氣凝膠氮氣吸脫附曲線圖(a)pH=8~9、(b)pH=9~10、(c)pH=10~11.........................................................................................45 圖4.1 二氧化鈦-二氧化矽複合氣凝膠流程圖.........................................................47 圖4.2 二氧化鈦-二氧化矽複合氣凝膠之SEM圖...................................................48 圖4.3 二氧化鈦-二氧化矽複合氣凝膠之TEM圖...................................................48 圖4.4 二氧化鈦-二氧化矽複合氣凝膠的FT-IR圖..................................................49 圖4.5 二氧化鈦-二氧化矽複合氣凝膠製成流程圖.................................................51 圖4.6 二氧化鈦-二氧化矽複合氣凝膠.....................................................................52 圖4.7 二氧化鈦-二氧化矽複合氣凝膠SEM圖(a)二氧化鈦-二氧化矽複合氣凝膠、(b)二氧化矽氣凝膠..............................................................................................53 圖4.8 二氧化鈦-二氧化矽複合氣凝膠氮氣吸脫附曲線.........................................53 圖4.9 二氧化鈦-二氧化矽複合氣凝膠之FT-IR圖..................................................54 圖4.10 二氧化鈦-二氧化矽複合氣凝膠C-NMR圖.................................................55 圖4.11 二氧化鈦-二氧化矽複合氣凝膠Si-NMR圖................................................55 圖4.12 二氧化鈦-二氧化矽複合氣凝膠之接觸角圖...............................................56 圖5.1 二氧化錫-二氧化矽複合多孔材料穿透式電子顯微鏡圖.............................57 圖5.2 二氧化錫-二氧化矽複合乾凝膠高解析度穿透式電子顯微鏡圖.................58 圖5.3 二氧化錫-二氧化矽複合乾凝膠光學比較圖.................................................59 圖5.4(a) 以溶膠-凝膠法之二氧化錫-二氧化矽複合氣凝膠製程流程圖...............61 圖5.4(b) 以液相沉積法之二氧化錫-二氧化矽複合氣凝膠製程流程圖................62 圖5.5 不同溫度熱處理後之二氧化錫(0.03mole)-二氧化矽複合氣凝膠照片(a) 300oC、(b) 400oC、(c) 500oC、(d) 700oC.......................................................................63 圖5.6 不同熱處理溫度之二氧化錫(0.03mole)-二氧化矽複合氣凝膠SEM圖(a)300oC、(b)700oC.......................................................................................................64 圖5.7 熱處理400oC二氧化錫(0.03mole)-二氧化矽複合氣凝膠TEM圖.............65 圖5.8 二氧化錫(0.1mole)-二氧化矽複合氣凝膠700 oC熱處理後之HRTEM圖(a)SAED圖(b)晶格放大圖(c).....................................................................................67 圖5.9 二氧化錫(0.03mole)-二氧化矽複合氣凝膠400 oC熱處理後之HRTEM圖(a)SAED圖(b)晶格放大圖(c) ....................................................................................68 圖5.10 二氧化錫(0.03mole)-二氧化矽複合氣凝膠700 oC熱處理之EDS元素分析圖..................................................................................................................................68 圖5.11 二氧化錫(0.03mole)-二氧化矽複合氣凝膠氮氣吸脫附曲線比較圖(a)300 oC、(b)400oC、(c)500oC、(d)700oC................................................................................70 圖5.12 純二氧化矽氣凝膠於大氣下經不同溫度熱處理後之氮氣吸脫附曲線比較圖(a)400oC、(b)500oC、(c)700oC、(d)500oC熱處理樣品之孔徑分佈..................................................................................................................................71 圖5.13 二氧化錫(0.05mole)-二氧化矽複合氣凝膠氮氣吸脫附曲線比較圖(a)400 oC、(b)500oC、(c)700oC.................................................................................................72 圖5.14 二氧化錫(0.1mole)-二氧化矽複合氣凝膠氮氣吸脫附曲線比較圖(a)400 oC、(b)500oC、(c)700oC.................................................................................................73 圖5.15 不同熱處理溫度二氧化錫(0.03mole)-二氧化矽複合氣凝膠之UV吸收光譜(內圖)以700oC為例估計吸收波段之示意圖........................................................75 圖5.16 不同熱處理溫度二氧化錫(0.03mole)-二氧化矽複合氣凝膠之PL發光光譜..................................................................................................................................76 圖5.17 500oC熱處理二氧化錫(0.03mole)-二氧化矽複合氣凝膠與純二氧化矽氣凝膠之PL發光光譜比較圖............................................................................................76 圖5.18 常壓乾燥後二氧化矽氣凝膠經高溫熱處理之SiO3結構缺陷示意圖.......77 圖5.19 500oC熱處理二氧化錫(0.03mole)-二氧化矽複合氣凝膠與純二氧化矽氣凝膠之UV吸收光譜比較圖(內圖)複合氣凝膠之吸收波段估計示意圖....................78 圖5.20 500oC熱處理二氧化錫(0.03mole)-二氧化矽複合氣凝膠經反迴旋解析後之PL發光光譜比圖.........................................................................................................78 圖5.21 不同濃度二氧化錫-二氧化矽複合氣凝膠500oC熱處理後之UV吸收光譜比較圖(內圖)0.1mole之吸收波段估計圖..................................................................80 圖5.22 不同濃度二氧化錫-二氧化矽複合氣凝膠500oC熱處理後之PL發光光譜比較圖..........................................................................................................................81 圖5.23不同熱處理溫度純二氧化矽氣凝膠光觸媒檢測後之UV吸收光譜(a)400oC、(b)500oC、(c)700oC......................................................................................82 圖5.24 不同熱處理溫度二氧化錫(0.03mole)-二氧化矽複合氣凝膠光觸媒檢測後之UV吸收光譜(a)400oC、(b)500oC、(c)700oC............................................................83 圖5.25 經液相沉積法製備400oC之二氧化錫-二氧化矽複合氣凝膠之HRTEM圖(a)SAED圖(b)晶格放大圖(c)未形成完整晶格示意圖(d).........................................85 圖5.26經液相沉積法製備500oC之二氧化錫-二氧化矽複合氣凝膠之HRTEM圖(a)SAED圖(b)晶格放大圖(c)未形成完整晶格示意圖(d).........................................86 圖5.27 經液相沉積法製備700oC之二氧化錫-二氧化矽複合氣凝膠之HRTEM圖(a)SAED圖(b)晶格放大圖(c)完整晶粒(d)................................................................87 圖5.28 經液相沉積法製備二氧化錫-二氧化矽複合氣凝膠之晶粒尺寸分佈圖(a)400oC、(b)500oC、(c)700oC......................................................................................88 圖5.29 經液相沉積法製備不同製程溫度下之二氧化錫-二氧化矽複合氣凝膠之XRD圖.........................................................................................................................90 圖5.30 經液相沉積法製備不同製程溫度下之二氧化錫-二氧化矽複合氣凝膠之氮氣吸脫附曲線(a)400oC、(b)500oC、(c)700oC..........................................................91 圖5.31 經由液相沉積法製備二氧化錫-二氧化矽複合氣凝膠不同熱處理後之UV吸收光譜比較圖..........................................................................................................92 圖5.32 經由液相沉積法製備二氧化錫-二氧化矽複合氣凝膠不同熱處理後之PL發光光譜比較圖..........................................................................................................93 圖3.33 液相沉積法製備二氧化錫-二氧化矽複合氣凝膠經不同溫度熱處理之光觸媒檢測結果(a)400oC、(b)500oC.............................................................................93 圖5.34 經由不同方法製備二氧化錫-二氧化矽複合氣凝膠後之PL發光光譜比較圖..................................................................................................................................94

    1. M. Andrew and L. H. Stephen, “An overview of semiconductor photocatalysis”, Journal of photochemistry and photobiology A, 108, 1 (1997).
    2. M. J. Annen, B. E. Yoldas, J. Bostaph, “Chemical Engineering of Aerogel Morphology Formed under Nonsupercritical Conditions for Thermal Insulation”, Chemistry of Materials, 12, 2475-2484 (2000)
    3. T. F. Baumann, S. O. Kucheyev, A. E. Gash, J. H. Satcher, “Facile Synthesis of a Crystalline, High-Surface-Area SnO2 Aerogel”, Advanced Materials, 17, 1546-1548 (2005)
    4. C. J. Brinker, S. S. Prakash, A.J. Hurd, “Silica Aerogel Films at Ambient Pressure“, Journal of Non-Crystalline Solids, 190, 264-275 (1995)
    5. S. L. Brock, J. L. Mohanan, L. U. Arachchige, “Porous Semiconductor Chalcogenide Aerogels”, Science, 307,397-400 (2005)
    6. S. Y. Choi, S. K. Kang, “Synthesis of Low-Density Silica Gel at Ambient Pressure: Effect of Heat Treatment”, Journal of Materials Science, 35, 4971-4976 (2000)
    7. A. Fujishima, K. Honda, ”Electrochemical photolysis of water at a semiconductor electrode”, Nature, 37, 238-241 (1972).
    8. F. Gu, S. F. Wang, M. K. Lu, G.J. Zhou, D. Xu, D. R. Yuan, ”Phtoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method”, Journal of Physical Chemistry B, 108, 8119-8123 (2004)
    9. D. Haranath, R. A. Venkateswara, P. B. Wagh, “Influence of DCCAs on Optical Transmittance and Porosity Properties of TMOS Silica Aerogels”, Journal of Porous Materials, 6(1), 55-62 (1999)
    10. I. I. Hinic, G. M. Stanisic, Z. V. Popovic, “Photoluminescence Properties of Silica Aerogel During Sintering Process”, Journal of Sol-Gel Science and Technology, 14, 281-289 (1999)
    11. Hitachi Scientific Instrument Technical Data, FL No. 24.
    12. N. Husing, U. Schubert, “Aerogels-Airy Materials: Chemistry, Structure, and Properties”, Angew. Chem. Int. Ed., 37, 22-45 (1998)
    13. S. H. Hyun, G. S. Kim, “Synthesis and Characterization of Silica Aerogel Films for Inter-Metal Dielectrics via Ambient Dring”, Thin Solid Films, 460, 190-200 (2004)
    14. S. H. Hyun, C. J. Lee, G.. S. Kim, “Synthesis of Silica Aerogels from Waterglass via New Modified Ambient Drying”, Journal of Materials Science, 37, 2237-2241 (2002)
    15. S. O. Kucheyev, J. Biener, Y. M. Wang, T. F. Baumann, K. J. Wu, T. V. Buuren, A. V. Hamza, J. H. Satcher, ”Atomic Layer Deposition of ZnO on Ultralow-density Nanoporous Silica Aerogel Monoliths”, Applied Physics Letters, 86, 083108 (2005)
    16. Y. G. Kwon, S.Y. Choi, “Ambient-Dried Silica Aerogel Doped with TiO2 Powder for Thermal Insulation”, Journal of Materials Science, 35, 6075-6079 (2000)
    17. J. Lin, K. Baerner, “Tunable Photoluminescence in Sol-Gel derived Silica xerogels”, Materials Letters, 46, 86-92 (2000)
    18. A. L. Linsebigler, G. Lu and J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chemical reviews, 95, 735(1995).
    19. M. Liu, F. Chen, Z. Shi, “Preparation of Mesoporous SnO2-SiO2 Composite as Electrodes for Lithium Batteries”, Chem. Commum., 2095-2096, (2000)
    20. M. K. Lu, F. Gu, S. F. Wang, G. J. Zhou, D. Xu, D. R. Yuan, “Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method“, Journal of Physical Chemistry B, 108, 8119-8123 (2004)
    21. R. W. Matthews, ”An adsorption water purifier with in situ photocatalytic regeneration”, Journal of catalysis, 113, 549-555(1988).
    22. C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, L. D. Zhang, “Enhancement Effect of Photoluminescence in Assemblies of Nano-ZnO Particles/Silica Aerogels“, Journal of Applied Physics, 83(8), 4389-4391 (1998)
    23. H. Nakano, O. Ohtani, T. Mitsuoka, Y. Akimoto, H. Nakamura, “Synthesis of Amorphous Silica Nanosheets and Their Photoluminescence”, Journal of American Ceramic Society, 88(12), 3522-3524 (2005)
    24. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”, Physical Review B, 45(2) 586-591 (1992)
    25. W. Li, H. Probstle, J. Fricke, “Electrochemical Behavior of Mixed CmRF based
    Carbon Aerogels as Electrode Materials for Supercapacitors”, Journal of Non-Crystalline Solids, 325, 1-5 (2003)
    26. G. M. Pajonk, “Some Applications of Silica Aerogels”, Colloid Polym Sci, 281, 637-651 (2003)
    27. A. C. Pierre, G. M. Pajonk, “Chemistry of Aerogels and Their Applications”, Chem. Rev ,102 ,4243-4265 (2002)
    28. A. Paleari, N. Chiodini, D. DiMartino, G. Spinolo, “SnO2 nanocrystals in SiO2: A Wide-Band-Gap Quantum-Dot System”, Applied Physics Letters, 81(9), 1702-1704 (2002)
    29. H. Probstle, C. Schmitt, J. Fricke, “Button Cell Supercapacitors with Monolithic Carbon Aerogels”, Journal of Power Sources, 105, 189-194 (2002)
    30. M. Schmidt, F. Schwertfeger, “Applications for Silica Aerogel Products”, Journal of Non-Crystalline Solids, 225, 364-368 (1998)
    31. J. V. Ryan, A. D. Berry, M. L. Anderson, J.W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher, “Electronic connextion to the interior of a mesoporous insulator with nanowires of crystalline RuO2”, Nature, 406, 169-172 (2000)
    32. J. M. Schultz, K. I. Jensen, F. H. Kristiansen, ”Development of Windows Based on Highly Insulating Aerogel Glazing,” Journal of Non-Crystalline Solids, 350, 351-357 (2004)
    33. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, “Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer”, Adv. Mater., 13(15), 1149-1152 (2001)
    34. H. Yokogawa, M. Yokoyama, “Hydrophobic Silica Aerogels”, Journal of Non-Crystalline Solids,186, 23-29 (1995)
    35. 王天路, 劉旭峰, ”氧化矽氣凝膠之應用”, 化工資訊與商情, 十二月號六期, 90-96 (2003)
    36. 林文發, 周世海, “隔熱材的明星材料”, 化工資訊, 四十八期, 48-53 (2001)
    37. 談駿嵩,“超臨界流體的應用”, 科學發展, 359期, 12-17 (2002)
    38. 盧偉珠,“高效的金屬氧化物氣凝膠觸媒”, 化工資訊, 四十八期, 58-65 (2001)
    39. 羅靖堯,“利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”, 國立成功大學化學研究所碩士論文
    40. 陳陵援,“儀器分析”, 三民書局 (1982)
    41. 陳宏軍, “氧化鋅奈米粉末之製備與研究”, 私立大同大學材料工程研究所碩士論文
    42. 蘇靜怡, “以超分子模板合成中孔結構之二氧化錫”, 國立中山大學材料科學研究所碩士論文
    43. http://stardust.jpl.nasa.gov/tech/aerogel.html
    44. http://www.aerogel.com/
    45. http://eetd.lbl.gov/ECS/aerogels/saphoto.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE