研究生: |
王俊揚 Wang, Jyun-Yang |
---|---|
論文名稱: |
對於節能與個別用戶偏好的 暖通空調設定溫度控制 HVAC Set-point Temperature Control for Energy Saving and Individual User Preference |
指導教授: |
洪樂文
Hong, Yao-Win |
口試委員: |
曹昱
Tsao, Yu 方士豪 Fang, Shih-Hau |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 暖通空調 、溫度控制 、智慧電網 、線性回歸 、邏輯回歸 |
外文關鍵詞: | HVAC,, temperature control, smart grid, linear regression, logistic regression |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出透過設定溫度的控制來達成在暖通空調上有效的能源消耗管理,其中我們還有考慮到室內熱動態模型和使用者滿意度模型。首先,在數據收集方面上,我們有在實驗室中設置好電度錶來收集每個時間區間暖通空調的能源消耗資料,並且設計了線上問卷表與定期發送此問卷表以收集使用者在滿意度上的回饋資料,接著我們將收集到的數據做分析,我們使用線性回歸的方式來建構出室內溫度和暖通空調能耗在時間上的變化模型,而邏輯回歸這方法是被我們用來建成使用者滿意度的模型。我們提出一個策略可以在未來L時間區間內達到最小化暖通空調能耗加上正規化使用者不滿意度的設定溫度控制,最後,在我們提出的方法其結果中可以明顯顯示出優於其他策略像是都固定設定溫度的方法。
This thesis addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems through set-point temperature control, taking into consideration both the indoor thermodynamic model and user satisfaction. In terms of data collection, power meters are setup in the lab to gather the HVAC energy consumption in each time slot, and an online form is designed and sent out regularly to gather user feedback regarding their satisfaction. In terms of data analysis, linear regression is used to model temporal variations in both indoor temperature and HVAC energy consumption, whereas logistic regression is used to model user satisfaction. The proposed set-point temperature control is determined by minimizing the HVAC energy consumption in the future $L$ time slots plus a regularization on the user dissatisfaction. Our proposed scheme is shown to significantly outperform the default strategy where the set-point temperature is often fixed over time.
[1] S. P. Anjana and T. S. Angel, "Intelligent demand side management for residential users in a smart micro-grid." in 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), 2017.
[2] D. Li, W.-Y. Chiu, H. Sun, and H. V. Poor, "Multiobjective optimization for demand side management program in smart grid." IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1482-1490, 2018.
[3] B. Sun, P. B. Luh, Q.-S. Jia, Z. Jiang, F. Wang, and C. Song, "Building energy management: Integrated control of active and passive heating, cooling, lighting, shading, and ventilation systems." IEEE Transactions on automation science and engineering,
vol. 10, no. 3, pp. 588-602, 2013.
[4] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, "Reducing transient and steady state electricity consumption in hvac using learning-based model-predictive control." Proceedings of the IEEE, vol. 100, no. 1, pp. 240-253, 2012.
[5] H. T. Nguyen, D. Nguyen, and L. B. Le, "Home energy management with generic thermal dynamics and user temperature preference." in 2013 IEEE Int. Conf. Smart Grid Communications (SmartGrid- Comm), 2013, pp. 552-557.
[6] S. Hosseini, R. Dai, and M. Mesbahi, "Power management of cooling systems with dynamic pricing." in American Control Conference (ACC), 2014.
[7] D. Manjarres, A. Mera, E. Perea, A. Lejarazu, and S. Gil-Lopez, "An energy-efficient predictive control for hvac systems applied to tertiary buildings based on regression techniques." Energy Build, vol. 152, pp. 409-417, 2017.
[8] S. Bashash, "Cost-optimal coordination of interacting hvac loads in buildings." in Journal of Dynamic Systems, Measurement, and Control, 2018.
[9] V. L. Erickson and A. E. Cerpa, \Thermovote: participatory sensing for efficient building hvac conditioning." in Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, 2012.
[10] J. Cigler, S. Prvara, Z. Va, D. Komrkov, and M. ebek, "Optimization of predicted mean vote thermal comfort index within model predictive control framework." in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012.
[11] P. Fanger, Thermal comfort: analysis and application in environmental engineering. Danish Technical Press Copenhagen, 1970.
[12] A. H. yat Lam, Y. Yuan, and D. Wang, "An occupant-participatory approach for thermal comfort enhancement and energy conservation in buildings." in Proceedings of the 5th international conference on Future energy systems, 2014.
[13] M. Javed, N. Li, and S. Li, "Personalized thermal comfort modeling based on support vector classification." in Proceedings of the 36th Chinese Control Conference, 2017.
[14] K. Zhou and L. Cai, "A dynamic water-lling method for real-time hvac load control based on model predictive control." IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1405-1414, May 2015.
[15] D. Zill, W. S. Wright, and M. R. Cullen, Advanced engineering mathematics. Jones & Bartlett Learning, 2011.
[16] A. Rautiainen, S. Repo, and P. Jrventausta, "Using frequency dependent charging of plug-in vehicles to enhance power systems frequency stability," in IEEE Bucharest PowerTech Conf., 2009.
[17] J. H. Yoon, R. Baldick, and A. Novoselac, "Dynamic demand response controller based on real-time retail price for residential buildings." IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 121-129, 2014.
[18] D. W. H. Jr., S. Lemeshow, and R. X. Sturdivant, Applied logistic regression. John Wiley & Sons, 2013.
[19] CWB, http://www.cwb.gov.tw.
[20] ComEd, http://hourlypricing.comed.com.