研究生: |
謝家倫 Hsieh, Chia-Lun |
---|---|
論文名稱: |
原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對PERC 太陽能電池效率影響 Effect of Double Annealings for stack of ALD Al2O3/SiNx on the Performance of PERC Silicon Solar Cell |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
甘炯耀
Gan, Jon-Yiew 陳昇暉 Chen, Sheng-Hui |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 太陽能電池 、三氧化二鋁 、二次退火 |
外文關鍵詞: | Double Annealings |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究的目的在於二次退火對於PERC太陽能電池背面氧化鋁鈍化層,對於太陽能電池性能的影響。實驗中使用兩種不同晶片分別進行比較,其中一種是由中美矽晶公司沉積三氧化二鋁的晶片,另一種是由清大奈米中心所沉積三氧化二鋁的晶片。為了比較兩種晶片沉積三氧化二鋁前後的差異,由WCT-120找出各種晶片最佳的少數載子生命週期。
首先要找出三氧化二鋁與矽接面上最佳的場鈍化效果,必須找出氧化鋁層最佳的退火時間與退火溫度。中美矽晶公司使用的機台為原子層沉積,其所沉積出的氧化鋁進行退火,得到最佳退火時間為60秒,最佳退火溫度為700℃;而清大奈米中心使用的原子層沉積機台,所沉積出的氧化鋁進行退火,得到最佳退火時間為10分鐘,最佳退火溫度為525℃。
接著在晶片背面會鍍上氮化矽層,並進行二次退火步驟。而這兩種晶片的最佳二次退火時間皆為10分鐘,最佳退火溫度為400℃。最後在最佳參數的條件下所做出的PERC太陽能電池得到最高轉換效率為17.63%。而對於僅進行一次退火的PERC太陽能電池效率相比平均約有0.22%的提升。
The purpose of this study is to investigate the effect of second annealing on the performance of PERC silicon solar cells with rear-side aluminum oxide passivation layers .Two kinds of wafers were applied in the experiment. Al2O3 layers of the one kind were deposited by the Sino-American Silicon Products Inc ( SASPI ), and the other kind were deposited by the Center For Nanotechnology, Materials Science, and Microsystems, National Tsing Hua University(NTHU). In order to compare the difference between two kinds of wafers, the WCT-120 was used to find the best minority carrier lifetime for each kind.
First of all, to provide a good field-effect passivation at the Al2O3/Si interface, finding the best annealing time and annealing temperature is necessary.The best annealing time and annealing temperature for the wafers from SASPI were 60 seconds, and 700℃, respectively. For the wafers with oxide layers deposited by the atomic layer deposition(ALD) technique at NTHU, the best annealing time and annealing temperature were, respectively, 10 minutes and 525℃.
Subsequently, the back sides of these wafers were coated with silicon nitride layers and were processed with a second-time annealing. Both of their best times for the second-time annealing were 10 minutes, and the best annealing temperature was 400°C. At the best annealing condition, the PERC solar cells with ALD-deposited aluminum oxide layers have the best conversion efficiency of 17.63 %. With respect to the cells processed by only one annealing, this corresponds to an improvement of 0.22% on average.
參考文獻
[1] J. Schmidt , A. Merkle , R. Brendel , B. Hoex , M.C.M. van de Sanden ,and W.M.M. Kessels , “Surface passivation of high-efficiency silicon solar cells by atomic-layer-depositedAl2O3,” Wiley Inter Science, vol. 16 , issue 4 ,pp.461–466, Mar. 2008. [2] G. Dingemans and W.M.M. Kessels , “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells ,” Journal of Vacuum Science & Technology A , vol. 30 , issue 4 , pp. 040802-1 – 040802-27 , Jul. 2012. [3] J. Stuckelberger , G. Nogay , P. Wyss , Q. Jeangros , C. Allebé , F. Debrot , X. Niquille , M. Ledinsky , A. Fejfar , M. Despeisse , F. J. Haug , P. Löper ,and C. Ballif ,“Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells,” Solar Energy Materials and Solar Cells , vol. 158 , part 1 , pp.2-10 , Dec. 2016. [4] F. Duerinckx and J. SzlufcikD , “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, vol. 72 , issues 1–4 , pp.231-246 , Apr. 2002.
[5] P. Poodt , A. Lankhorst , F. Roozeboom , K. Spee , D. Maas ,and A.Vermeer , “High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation,”Advanced Material , vol.22 , issue 32 ,pp.3564-3567 , Aug. 2010.
[6] C.H.Lin , H.L.Wang and M.H.Hon , “Preparation and characterization of aluminum oxide films by plasma enhanced chemical vapor deposition,” Surface and Coatings Technology, vol. 90 , issues 1–2 ,pp.102-106 , Mar. 1997.
[7] P. Saint-Cast , J. Benick, Daniel Kania , L. Weiss , M. Hofmann, J. Rentsch ,
R. Preu ,and Stefan W. Glunz, Member, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide,” IEEE Electron Device Letters , vol. 31 , issue 7 , pp.695-697, Jul. 2010.
[8]陳松裕博士,矽晶鈍化射極與背面太陽電池技術介紹與展望,工研院綠能所
[9] 晶科能源控股有限公司
https://www.jinkosolar.com/uploads/2020&e6&99&b6&e7&a7&91&e8&83&bd&e6&ba&90&e7&ae&80&e4&bb&8b&e5&ae&a3&e4&bc&a0&e5&86&8c.pdf
[10] B. Vermang , H. Goverde , A. Uruena , A. Lorenz , E. Cornagliotti ,
A. Rothschild , J. John , J. Poortmans ,and R. Mertens , "Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells," Solar Energy Materials & Solar Cells, vol. 101 , pp.204-209 , Jun. 2012
[11]H. Huang , J. Lv , Y. Bao , R. Xuan , S. Sun , S. Sneck , S.Li , C.Modanese , H.Savin , A.Wang ,and J.Zhao , " Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell ," Journal Data in Brief , vol.11 , pp.19-26 , Apr. 2017.
[12] O. Schulk , M. Hofmann , S.W. Elunz ,and G. P. Willeke Fmunhofer ,"Institute for Solar Energy Systems Heidenhofstraae 2, D-79110 Freiburg, “Silicon oxide/silicon nitride stack system for 20% efficient silicon solar cells,” Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA.
[13]T. Lauinger , J. Schmidt , A.G. Aberle ,and R. Hezel , “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Applied Physics Letters , vol.68 , issue 9 ,pp.1232-1234 , Dec. 1996
[14] J.F. Lelièvre , B. Kafle ,P. Saint‐Cast ,P. Brunet ,R. Magnan , E. Hernandez ,
S. Pouliquen ,and F. Massines , “Efficient silicon nitride SiNx:H antireflective and passivation layers deposited by atmospheric pressure PECVD for silicon solar cells,” Progress in Photovoltaics , vol.27 , issue 11 , pp.1007-1019 , Nov. 2019.
[15] S. Lia , N. Yanga , X. Yuana , X. Yea , L. Wangb , F. Zhengc , C. Liua ,and
H. Lia, “Plasma-induced damage and annealing repairing in ALD-Al2O3/PECVD-SiNx stacks,” Materials Science in Semiconductor Processing , vol. 100 , pp.214-219 , Sep. 2019
[16] 林明獻, 太陽能電池技術入門 , 全華圖書股份有限公司 ,
[17] L.M. Frass , Low Cost Solar Electric Power , Switzerland : Springer Science , Jun. 2014.
[18] H. Häberlin , Photovoltaics: System Design and Practice , New York:John Wiley & Sons Inc , Feb. 2012.
[19] M. A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution,” Progress in photovoltaics, vol.17 , issue 3 ,pp.183-189 , Mar. 2009.
[20] D.M. Chapin , C.S. Fuller ,and G.L. Pearson , “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Vacuum Science & Technology A , vol.25 , issue 5 , pp.676-677 , May. 1954.
[21] 國家能源科技人才培育計畫
https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[22] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[23] Andrew Blakers, “Development of the PERC solar cell,” IEEE Journal of Photovoltaics , vol.9 , issue 3 , pp.629-635 , May. 2019.
[24] 陳松裕、林鈺璇,file:///C:/Users/user/Downloads/M357107%20(12).pdf
[25] Chapter 3 Carrier Transport Phenomena 載子傳輸現象https://slidesplayer.com/slide/15038731/
[26] 太陽能實驗組http://www2.nsysu.edu.tw/physdemo-kh/2012/E4/E4.php
[27] 維基百科晶體結構https://zh.wikipedia.org/wiki/
[28] 半導體物理固態量子導論
http:// 120.101.8.4/lyhsu/post/..%5Cdatabase%5Cgrade%5C%E8%91%89%E6%
98%87%E5%B9%B3%5Cchapter_3_EB_0311&0318.pdf
[29] M. Fukuda , Optical Semiconductor Devices , New York:John Wiley & Sons Inc , Dec. 1999.
[30] 光電實驗室 http://physcourse.thu.edu.tw/st109/%E5%AF%A6%E9%A9%97%E9%A0%85%E7%9B%AE/8
[31] NREL
https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
[32] C. Derricks , A. Herguth , G. Hahn , O. Romer ,and T. Pernau ,“Industrially applicable mitigation of BO-LID in Cz-si PERC-type solar cells within a coupled fast firing and halogen lamp based belt-line regenerator – A parameter study,” Solar Energy Materials and Solar Cells , vol. 195 , pp. 358-366 , Jun. 2019.
[33] T. Luk , M. Turek , C. Kranert , S. Großer ,and C. Hagendorfa ,“Microstructural investigation of LID sensitive mc-PERC solar cells ,” Energy Procedia , vol. 124, pp.759-766, Sep. 2017.
[34] C.Modanese , Mt.Wagner , F.Wolny, A.Oehlke ,H.S.Laine , A. Inglese , H. Vahlman , M. Yli-Koski ,and H. Savin,“Impact of copper on light-induced degradation in czochralski silicon PERC solar cells,” Solar Energy Materials and Solar Cells , vol. 186 , pp.373-377 , Nov. 2018.
[35] M. Padmanabhan , K. Jhaveri , R. Sharma , P. K. Basu , S. Raj, J. Wong ,and J. Li ,“Light‐induced degradation and regeneration of multicrystalline silicon Al‐bsf and PERC solar cells,” Physica Status Solidi , vol.10 , issue 12 , pp. 874-881 ,
Nov. 2016.
[36] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf ,and G. Beaucarne, “Very low surface recombination vlocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials and Solar Cells , vol. 90 , issues 18-19 , pp. 3438-3443, Nov. 2006
[37] Jerry G. Fossum member , “Physical operation of back-surface-field silicon solar cells, ” IEEE Transactions on Electron Devices , vol. 20 , issue4 , pp.322-325 , Apr. 1977.
[38] S. Narasimha and A. Rohatgi, “An optimized rapid aluminum back surface field technique for silicon solar cells ”, IEEE Transactions on Electron Devices , vol. 46 , issue 7 ,pp.1363-1370 , Jul. 1997.
[39] A. Kaminski, B. Vandella, A. Fave, J.P. Boyeaux, L. Q. Nam, R. Monna , D. Sarti ,and A. Laugier, "Aluminum bsf in silicon solar cells," Solar Energy Materials and Solar Cells , vol. 72 , issues 1-4 , pp.373-379 , Apr. 2002
[40] ALD機制圖https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/198/01980380.pdf
[41] J.Chen , Z.H. Joseph Tey , Z.R. Du , F. Lin , B. Hoex ,and A.G. Aberle , “Investigation of screen printed rear contacts for aluminum local back surface field silicon wafer solar cells”, IEEE Journal of Photovoltaics , vol. 3, issue 2 , pp.690-696, Feb 2013.
[42] H. Huanga , J. Lv , Y. Bao , R. Xuan , S. Suna , S. Sneckc , S. Li , C. Modanese , H. Savin , A. Wang ,and J. Zhao “20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%,” Solar Energy Materials and Solar Cells , vol. 161 , pp.14-30 , Mar. 2017.
[43] J. Schmidt and B. Veith, R. Brendel, “Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks”, Physica Status Solidi , vol.3 , issue 9 , pp.287–289 , Nov. 2009.
[44] D. Schuldis , A. Richter, J. Benick, P. Saint-Cast, M. Hermle ,and S.W. Glunz, “Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation, ”Applied Physics Letters , vol.105 , issue 23 , pp. 231601-1 - 231601-5 , Dec. 2014.
[45] C.H. Shin , D.W. Kwak , D.H. Kim , D.W. Lee , S. Huh , K.S. Park ,and H.Y. Cho , “Nitrogen effect on negative fixed charges of Al2O3 passivation film in crystalline Si solar cells, ” 2010 35th IEEE Photovoltaic Specialists Conference , Honolulu, HI, USA.
[46] S. Li , N. Yang , X. Yuan , C. Liu , X. Ye ,and H. Li , “Hydrogen induced interface passivation in atomic layer deposited Al2O3 films and Al2O3/SiO2 stacks,” Materials Science in Semiconductor Processing , vol. 83 , pp.171-174 , Aug. 2018.