簡易檢索 / 詳目顯示

研究生: 謝家倫
Hsieh, Chia-Lun
論文名稱: 原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對PERC 太陽能電池效率影響
Effect of Double Annealings for stack of ALD Al2O3/SiNx on the Performance of PERC Silicon Solar Cell
指導教授: 王立康
Wang, Li-Karn
口試委員: 甘炯耀
Gan, Jon-Yiew
陳昇暉
Chen, Sheng-Hui
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 太陽能電池三氧化二鋁二次退火
外文關鍵詞: Double Annealings
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究的目的在於二次退火對於PERC太陽能電池背面氧化鋁鈍化層,對於太陽能電池性能的影響。實驗中使用兩種不同晶片分別進行比較,其中一種是由中美矽晶公司沉積三氧化二鋁的晶片,另一種是由清大奈米中心所沉積三氧化二鋁的晶片。為了比較兩種晶片沉積三氧化二鋁前後的差異,由WCT-120找出各種晶片最佳的少數載子生命週期。
    首先要找出三氧化二鋁與矽接面上最佳的場鈍化效果,必須找出氧化鋁層最佳的退火時間與退火溫度。中美矽晶公司使用的機台為原子層沉積,其所沉積出的氧化鋁進行退火,得到最佳退火時間為60秒,最佳退火溫度為700℃;而清大奈米中心使用的原子層沉積機台,所沉積出的氧化鋁進行退火,得到最佳退火時間為10分鐘,最佳退火溫度為525℃。
    接著在晶片背面會鍍上氮化矽層,並進行二次退火步驟。而這兩種晶片的最佳二次退火時間皆為10分鐘,最佳退火溫度為400℃。最後在最佳參數的條件下所做出的PERC太陽能電池得到最高轉換效率為17.63%。而對於僅進行一次退火的PERC太陽能電池效率相比平均約有0.22%的提升。


    The purpose of this study is to investigate the effect of second annealing on the performance of PERC silicon solar cells with rear-side aluminum oxide passivation layers .Two kinds of wafers were applied in the experiment. Al2O3 layers of the one kind were deposited by the Sino-American Silicon Products Inc ( SASPI ), and the other kind were deposited by the Center For Nanotechnology, Materials Science, and Microsystems, National Tsing Hua University(NTHU). In order to compare the difference between two kinds of wafers, the WCT-120 was used to find the best minority carrier lifetime for each kind.
    First of all, to provide a good field-effect passivation at the Al2O3/Si interface, finding the best annealing time and annealing temperature is necessary.The best annealing time and annealing temperature for the wafers from SASPI were 60 seconds, and 700℃, respectively. For the wafers with oxide layers deposited by the atomic layer deposition(ALD) technique at NTHU, the best annealing time and annealing temperature were, respectively, 10 minutes and 525℃.
    Subsequently, the back sides of these wafers were coated with silicon nitride layers and were processed with a second-time annealing. Both of their best times for the second-time annealing were 10 minutes, and the best annealing temperature was 400°C. At the best annealing condition, the PERC solar cells with ALD-deposited aluminum oxide layers have the best conversion efficiency of 17.63 %. With respect to the cells processed by only one annealing, this corresponds to an improvement of 0.22% on average.

    目錄 第一章 序論 1 1.1前言 1 1.2太陽能電池歷史 2 1.3 研究目的 7 1.4 論文架構 7 第二章 研究理論 8 2.1基礎半導體物理 9 2.1-1半導體材料簡介 9 2.1.1晶格結構 10 2.1.2能帶理論 14 2.1.3直接能隙與間接能隙 16 2.1.4產生與複合 17 2.1.5摻雜 18 2.1.5 P-N接面 19 2.1-2太陽能電池基本原理 20 2.2.1太陽能光譜 20 2.2.2太陽電池工作原理 21 2.2.3太陽能電池等效電路 22 2.3.4太陽能重要參數 24 2.3.5效率損失因素 26 2.3.6氧化鋁鈍化層 27 2.3.7背表面場 28 2.3.8 C-V量測 29 第三章 研究方法與製程步驟 32 3.1實驗架構 32 3.2元件製作流程 34 3.3實驗步驟 34 3.3.1 RCA clean 35 3.3.2表面粗糙化 35 3.3.3磷擴散 35 3.3.4 拋光 36 3.3.5 磷玻璃去除 36 3.3.6 晶邊絕緣 36 3.3.7 原子層沉積 37 3.3.8 退火 38 3.3.9 氮化矽保護層 38 3.3.10 黃光製程 39 3.3.11 正面氮化矽抗反射層 41 3.3.12 網印 41 3.3.13 電極共燒 42 3.4操作儀器介紹 42 第四章 數據分析與討論 46 4.1少數載子生命週期 46 4.2 少數載子生命週期衰退 60 4.3 SiNx與鈍化層之相關參數 62 4.4 TEM量測 64 4.5 C-V量測 68 4.6 反射率量測 69 4.7 BSF厚度 70 4.8 元件I-V量測 74 4.9 量子轉換效率 82 第五章 結論 83 參考文獻 85

    參考文獻
    [1] J. Schmidt , A. Merkle , R. Brendel , B. Hoex , M.C.M. van de Sanden ,and W.M.M. Kessels , “Surface passivation of high-efficiency silicon solar cells by atomic-layer-depositedAl2O3,” Wiley Inter Science, vol. 16 , issue 4 ,pp.461–466, Mar. 2008. [2] G. Dingemans and W.M.M. Kessels , “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells ,” Journal of Vacuum Science & Technology A , vol. 30 , issue 4 , pp. 040802-1 – 040802-27 , Jul. 2012. [3] J. Stuckelberger , G. Nogay , P. Wyss , Q. Jeangros , C. Allebé , F. Debrot , X. Niquille , M. Ledinsky , A. Fejfar , M. Despeisse , F. J. Haug , P. Löper ,and C. Ballif ,“Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells,” Solar Energy Materials and Solar Cells , vol. 158 , part 1 , pp.2-10 , Dec. 2016. [4] F. Duerinckx and J. SzlufcikD , “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, vol. 72 , issues 1–4 , pp.231-246 , Apr. 2002.
    [5] P. Poodt , A. Lankhorst , F. Roozeboom , K. Spee , D. Maas ,and A.Vermeer , “High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation,”Advanced Material , vol.22 , issue 32 ,pp.3564-3567 , Aug. 2010.
    [6] C.H.Lin , H.L.Wang and M.H.Hon , “Preparation and characterization of aluminum oxide films by plasma enhanced chemical vapor deposition,” Surface and Coatings Technology, vol. 90 , issues 1–2 ,pp.102-106 , Mar. 1997.
    [7] P. Saint-Cast , J. Benick, Daniel Kania , L. Weiss , M. Hofmann, J. Rentsch ,
    R. Preu ,and Stefan W. Glunz, Member, “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide,” IEEE Electron Device Letters , vol. 31 , issue 7 , pp.695-697, Jul. 2010.
    [8]陳松裕博士,矽晶鈍化射極與背面太陽電池技術介紹與展望,工研院綠能所
    [9] 晶科能源控股有限公司
    https://www.jinkosolar.com/uploads/2020&e6&99&b6&e7&a7&91&e8&83&bd&e6&ba&90&e7&ae&80&e4&bb&8b&e5&ae&a3&e4&bc&a0&e5&86&8c.pdf
    [10] B. Vermang , H. Goverde , A. Uruena , A. Lorenz , E. Cornagliotti ,
    A. Rothschild , J. John , J. Poortmans ,and R. Mertens , "Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells," Solar Energy Materials & Solar Cells, vol. 101 , pp.204-209 , Jun. 2012
    [11]H. Huang , J. Lv , Y. Bao , R. Xuan , S. Sun , S. Sneck , S.Li , C.Modanese , H.Savin , A.Wang ,and J.Zhao , " Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell ," Journal Data in Brief , vol.11 , pp.19-26 , Apr. 2017.
    [12] O. Schulk , M. Hofmann , S.W. Elunz ,and G. P. Willeke Fmunhofer ,"Institute for Solar Energy Systems Heidenhofstraae 2, D-79110 Freiburg, “Silicon oxide/silicon nitride stack system for 20% efficient silicon solar cells,” Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA.
    [13]T. Lauinger , J. Schmidt , A.G. Aberle ,and R. Hezel , “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Applied Physics Letters , vol.68 , issue 9 ,pp.1232-1234 , Dec. 1996
    [14] J.F. Lelièvre , B. Kafle ,P. Saint‐Cast ,P. Brunet ,R. Magnan , E. Hernandez ,
    S. Pouliquen ,and F. Massines , “Efficient silicon nitride SiNx:H antireflective and passivation layers deposited by atmospheric pressure PECVD for silicon solar cells,” Progress in Photovoltaics , vol.27 , issue 11 , pp.1007-1019 , Nov. 2019.
    [15] S. Lia , N. Yanga , X. Yuana , X. Yea , L. Wangb , F. Zhengc , C. Liua ,and
    H. Lia, “Plasma-induced damage and annealing repairing in ALD-Al2O3/PECVD-SiNx stacks,” Materials Science in Semiconductor Processing , vol. 100 , pp.214-219 , Sep. 2019
    [16] 林明獻, 太陽能電池技術入門 , 全華圖書股份有限公司 ,
    [17] L.M. Frass , Low Cost Solar Electric Power , Switzerland : Springer Science , Jun. 2014.
    [18] H. Häberlin , Photovoltaics: System Design and Practice , New York:John Wiley & Sons Inc , Feb. 2012.
    [19] M. A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution,” Progress in photovoltaics, vol.17 , issue 3 ,pp.183-189 , Mar. 2009.
    [20] D.M. Chapin , C.S. Fuller ,and G.L. Pearson , “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Vacuum Science & Technology A , vol.25 , issue 5 , pp.676-677 , May. 1954.
    [21] 國家能源科技人才培育計畫
    https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
    [22] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
    [23] Andrew Blakers, “Development of the PERC solar cell,” IEEE Journal of Photovoltaics , vol.9 , issue 3 , pp.629-635 , May. 2019.
    [24] 陳松裕、林鈺璇,file:///C:/Users/user/Downloads/M357107%20(12).pdf
    [25] Chapter 3 Carrier Transport Phenomena 載子傳輸現象https://slidesplayer.com/slide/15038731/
    [26] 太陽能實驗組http://www2.nsysu.edu.tw/physdemo-kh/2012/E4/E4.php
    [27] 維基百科晶體結構https://zh.wikipedia.org/wiki/
    [28] 半導體物理固態量子導論
    http:// 120.101.8.4/lyhsu/post/..%5Cdatabase%5Cgrade%5C%E8%91%89%E6%
    98%87%E5%B9%B3%5Cchapter_3_EB_0311&0318.pdf
    [29] M. Fukuda , Optical Semiconductor Devices , New York:John Wiley & Sons Inc , Dec. 1999.
    [30] 光電實驗室 http://physcourse.thu.edu.tw/st109/%E5%AF%A6%E9%A9%97%E9%A0%85%E7%9B%AE/8
    [31] NREL
    https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
    [32] C. Derricks , A. Herguth , G. Hahn , O. Romer ,and T. Pernau ,“Industrially applicable mitigation of BO-LID in Cz-si PERC-type solar cells within a coupled fast firing and halogen lamp based belt-line regenerator – A parameter study,” Solar Energy Materials and Solar Cells , vol. 195 , pp. 358-366 , Jun. 2019.
    [33] T. Luk , M. Turek , C. Kranert , S. Großer ,and C. Hagendorfa ,“Microstructural investigation of LID sensitive mc-PERC solar cells ,” Energy Procedia , vol. 124, pp.759-766, Sep. 2017.
    [34] C.Modanese , Mt.Wagner , F.Wolny, A.Oehlke ,H.S.Laine , A. Inglese , H. Vahlman , M. Yli-Koski ,and H. Savin,“Impact of copper on light-induced degradation in czochralski silicon PERC solar cells,” Solar Energy Materials and Solar Cells , vol. 186 , pp.373-377 , Nov. 2018.
    [35] M. Padmanabhan , K. Jhaveri , R. Sharma , P. K. Basu , S. Raj, J. Wong ,and J. Li ,“Light‐induced degradation and regeneration of multicrystalline silicon Al‐bsf and PERC solar cells,” Physica Status Solidi , vol.10 , issue 12 , pp. 874-881 ,
    Nov. 2016.
    [36] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf ,and G. Beaucarne, “Very low surface recombination vlocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials and Solar Cells , vol. 90 , issues 18-19 , pp. 3438-3443, Nov. 2006
    [37] Jerry G. Fossum member , “Physical operation of back-surface-field silicon solar cells, ” IEEE Transactions on Electron Devices , vol. 20 , issue4 , pp.322-325 , Apr. 1977.
    [38] S. Narasimha and A. Rohatgi, “An optimized rapid aluminum back surface field technique for silicon solar cells ”, IEEE Transactions on Electron Devices , vol. 46 , issue 7 ,pp.1363-1370 , Jul. 1997.
    [39] A. Kaminski, B. Vandella, A. Fave, J.P. Boyeaux, L. Q. Nam, R. Monna , D. Sarti ,and A. Laugier, "Aluminum bsf in silicon solar cells," Solar Energy Materials and Solar Cells , vol. 72 , issues 1-4 , pp.373-379 , Apr. 2002
    [40] ALD機制圖https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/198/01980380.pdf
    [41] J.Chen , Z.H. Joseph Tey , Z.R. Du , F. Lin , B. Hoex ,and A.G. Aberle , “Investigation of screen printed rear contacts for aluminum local back surface field silicon wafer solar cells”, IEEE Journal of Photovoltaics , vol. 3, issue 2 , pp.690-696, Feb 2013.
    [42] H. Huanga , J. Lv , Y. Bao , R. Xuan , S. Suna , S. Sneckc , S. Li , C. Modanese , H. Savin , A. Wang ,and J. Zhao “20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%,” Solar Energy Materials and Solar Cells , vol. 161 , pp.14-30 , Mar. 2017.
    [43] J. Schmidt and B. Veith, R. Brendel, “Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks”, Physica Status Solidi , vol.3 , issue 9 , pp.287–289 , Nov. 2009.
    [44] D. Schuldis , A. Richter, J. Benick, P. Saint-Cast, M. Hermle ,and S.W. Glunz, “Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation, ”Applied Physics Letters , vol.105 , issue 23 , pp. 231601-1 - 231601-5 , Dec. 2014.
    [45] C.H. Shin , D.W. Kwak , D.H. Kim , D.W. Lee , S. Huh , K.S. Park ,and H.Y. Cho , “Nitrogen effect on negative fixed charges of Al2O3 passivation film in crystalline Si solar cells, ” 2010 35th IEEE Photovoltaic Specialists Conference , Honolulu, HI, USA.
    [46] S. Li , N. Yang , X. Yuan , C. Liu , X. Ye ,and H. Li , “Hydrogen induced interface passivation in atomic layer deposited Al2O3 films and Al2O3/SiO2 stacks,” Materials Science in Semiconductor Processing , vol. 83 , pp.171-174 , Aug. 2018.

    QR CODE