簡易檢索 / 詳目顯示

研究生: 楊健和
Yang, Chien-Ho
論文名稱: 新穎生物高分子共聚酯與石墨烯複合材料製備與應用之研究
The study of preparation and application of novel biopolymer copolyester and graphene composites
指導教授: 李育德
Lee, Yu-Der
蔡宏斌
Tsai, Hong-Bing
口試委員: 劉大佼
蔡宏斌
蘇安仲
張根源
李育德
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 196
中文關鍵詞: 聚左旋乳酸石墨烯開環反應原位共聚合
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    以石油為基礎原料的塑膠材料,廣泛應用在生活的各個層面,大幅提升了日常生活的舒適性,現今全球各類塑膠的年需求量已經超過2 億公噸,但每年仍然持續成長,但此類材料大部份具有不易分解或對生物具有毒性之缺點,當大量使用時,預期必將造成嚴重的環保和社會問題,因此可利用具生物分解性(biodegradable)或生物相容性(biocompatiable)的生物高分子取代現在使用的泛用塑膠,以避免或減輕此類問題。
    本研究可分為兩部份,第一部份乃是利用共聚合的方式,調控生物分解性之左旋聚乳酸(PLLA)之熱性質、生物分解速率等性質,以增加PLLA在工業或民生用品上應用之潛力。第二次部份則是利用少量之石墨烯分別導入生物相容性聚乙烯醇(PVA)與PLLA,改善高分子之熱穩定性、結晶性質,並賦予優良之導電性,以拓展此類生物高分子於光電應用之可能性。
    在PLLA共聚高分子的研究中,主要是利用陽離子開環製備PLLA-PTMEG-PLLA(TMLA)與PLLA-PC-PLLA(PCLA)之三嵌段共聚高分子,以及利用轉酯化反應製備PET-r-PLLA(ETLA)與PBT-r-PLLA(BTLA)亂排共聚酯。在PCLA共聚高分子的部份,脂肪族之PC與PLLA互為相溶,其Tg亦隨著PLLA含量上升而提高,且PC的含量提升可有效的減少PLLA之結晶度,可利用脂肪族PC導入,或調控PLLA之透明度。由生物分解測試的結果,可確定其分解反應是由非結晶區(amorphorous region)先開始,且隨著測試時間增加分解量亦增加,足見PLLA於共聚物中仍保有生物分解性。而在TMLA共聚高分子的部份,由於PTMEG與PLLA互為不溶,使PLLA之熱性質可得到最大程度的保留。且經由酵素分解測試,發現改變PTMEG的含量,可有效的調控PLLA分解的速率,在應用上,可針對不同壽命(life time)須求的產品進行設計。此外,在PET、PBT分別與PLLA共聚合而得之亂排共聚酯方面,以一次進料的方式以聚縮合反應器合成,可成功的生產出新穎之PLLA亂排共聚酯,相較於多次進料法,此法在生產效率上較為優異。且由酵素分解測試結果,可發現PET或PBT的導入,可有效的延遲PLLA之分解時間,並應用於使用壽命較長的產品中。
    在生物高分子與石墨之烯複合材料方面,利用減小氧化石墨烯(GO)尺寸的方式,可製備GO含量高達14wt%且均勻分散之GO/PVA複合材料,並提升PVA熱穩定性(Td-s提升約100oC),成功的利用GO的原位還原法,製出高rGO含量且分散均勻之rGO/PVA複合材料,並表現出優異的導電性(rGO 14wt%時,5.92 S m-1)。
    在熱還原石墨烯(TRG)與PLLA複合材料(GLLA)的部份,利用熔融陽離子開環聚合法,成功的製備GLLA複合材料,証明TRG上殘於之-OH可直接作為PLLA聚合反應之起始官能基,亦可推論此類-OH基或可進行其它反應。此外TRG可作為成核劑,提升PLLA初期的結晶速率,但隨著TRG含量增加,亦可利用其間所產生的空間阻礙,控制PLLA最大結晶度的範圍。由型態學觀察結果,可確定由共價鍵結法結合之複合材料,具有優異的介面作用力,避免材料缺陷產生,亦是此緣故,TRG微量的導入,即可賦予PLLA良好的導電性質(TRG於2wt%時,1.63×10-2 S m-1)。
    綜言之,利用共聚合的方式控制生物高分子之Tg、結晶度、分解速率以及延遲其分解時間,以及石墨烯不同方法導入製成導電複合材料,期望在未來上,可將生物高分子之實際應用率大幅的提高,以避免不環保泛用塑膠的使用。


    Abstract
    In this study, a series PLLA triblock copolymers and random copolymers were synthesized for adjusting various properties of PLLA. Expect to increase the application potential of biodegradable PLLA by introducing these polymers, including PTMEG, aliphatic PC, PET and PBT, respectively. For electrical application purpose, we also introduced graphene oxide(GO) and graphene(rGO and TRG) into biopolymers, PVA and PLLA, respectively.
    In the part of ABA triblock copolymers, a series of ABA triblock copolymers of PLLA and aliphatic polycarbonate (PCLA) have been synthesized and thoroughly characterized. PLLA and aliphatic PC are miscible and its Tg is increased with increasing PLLA content. The crystallinity of PLLA is decreased with increasing PC content. These tendency might be used for adjusting the transparency of PLLA. According to the results of biodegradability test, we found that the PLLA in PCLA triblock copolymers is still biodegradable and the degradation is starting from the amorphous region.
    A series of ABA triblock copolymers of PLLA and PTMEG(TMLA) have been also synthesized and thoroughly characterized. In enzymatic degradation, through the manipulation of PTMEG content in the triblock copolymer, the hydrolysis rate of PLLA segment by enzyme can be well controlled. The enzymatic degradation of PLLA segment decreases with increasing PTMEG content in the copolymer, while the weight loss percentage of the PLLA segment increases exponentially with time, indicating that the enzymatic degradation of PLLA segment is a diffusion-controlled process. Besides, the random copolymer, PET/PLLA and PBT/PLLA also had been synthesized and thoroughly characterized. The series of random copolymers display a long-term biodegradation, indicating that the introduction of PBT or PET with random form could retard the biodegradation of PLLA.
    In the part of graphene/biopolymer composites, GO/PVA composites were prepared and thoroughly characterized. Through a convenient effective method, uniform dispersed reduced graphene oxide(rGO)/PVA composites could be obtained by swelling the PVA matrix with a reducant solution. The electrical conductivity of the composite increases with increasing rGO content, while a sharp increase happens as the rGO content beyond 10wt%. Such an increase was evidenced by the formation of rGO network so as to diminish the electrical resistance by the interconnection structure of rGO. In our studies, the conductivity of rGO/PVA film increases from 6.04×10-3 S/m to 5.92 S/m as the rGO content increases from 4wt% to 14wt%.
    A series of poly(L-lactide) (PLLA)/thermally reduced graphene oxide (TRG) composites (GLLA) were prepared via the in situ ring-opening polymerization of lactide, with TRG as the initiator; after their preparation, the composites were characterized. By using a more effective method of synthesis, the thermal stability, crystallization rate, and electrical conductivity of PLLA were increased. The starting temperature for the thermal decomposition of PLLA was increased from 173oC to 211oC via the introduction of 2.00wt% TRG sheets. At a TRG content of 2.00wt%, the chemical interaction between the PLLA and the TRG sheets was strong enough to increase the nucleation rate and the overall crystallization rate of the PLLA. The electrical conductivity of the GLLA composites increased with increasing TRG content. Typical insulating-conductive percolation behavior was observed for TRG contents between 1.00 and 1.50wt%, and the electrical conductivity of the PLLA was improved by 12 orders of magnitude in the GLLA composites, from 7.14×10-14 S/m for neat PLLA to 1.63×10-2 S/m for GLLA with 2.00wt% of TRG sheets. These results demonstrate a straightforward means of preparing GLLA composites that perform satisfactorily in terms of their electrical conductivity and their thermal stability.
    In conclusion, the Tg, crystallinity and biodegradation rate of PLLA could be adjusted or controlled by copolymerized with other polymers. Besides, introduction of GO and TRG could enhance the thermal stability of biopolymer PVA and PLLA respectively and endowed the biopolymers(PLLA and PVA) with an outstanding electrical conductivity. To sum up, these improvement raised the applied potentials of PLLA, successfully.

    總目錄 摘要 I ABSTRACT IV 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1 研究之背景與目的 1 1-2 研究之重要性 4 第二章 文獻回顧 5 2-1 工程塑膠 5 2-1-1 PET、PBT 7 2-1-2 聚碳酸酯 14 2-1-3聚四氫呋喃 20 2-2 生物可分解材料 22 2-2-1 生物分解機制 23 2-2-2 天然生物可分解高分子 25 2-2-2-1 透明質酸 25 2-2-2-2 膠原蛋白 26 2-2-2-3 褐藻酸鹽 27 2-2-2-4 幾丁質與幾丁聚醣 27 2-2-2-5 明膠 28 2-2-2-6 軟骨素 28 2-2-3 人工合成高分子材料 29 2-2-3-1聚酯類高分子 30 2-2-3-2 聚醯胺 31 2-2-3-3 聚酸酐 32 2-2-3-4 聚醚 32 2-2-3-5 聚丁基氰丙烯酸酯 33 2-3 聚乳酸 33 2-3-1 聚乳酸之合成 37 2-3-2 聚乳酸之生物可分解性 38 2-3-3 聚乳酸之研究與應用 42 2-4 聚乙烯醇 44 2-4-1 聚乙烯醇之合成 44 2-4-2 聚乙烯醇之應用與膨潤性質 45 2-5石墨烯 46 2-5-1 以混摻法製備石墨烯複合材料 48 2-5-2 以共價鍵結法製備石墨烯複合材料 55 2-6 靜電紡織法 60 2-6-1 靜電紡織的型式 62 2-6-2 靜電紡織之研究與應用 64 第三章 實驗藥品、設備及方法 68 3-1 聚乳酸三團聯與亂排共聚酯之合成與研究 68 3-1-1 實驗藥品 68 3-1-2研究方法 71 3-1-3 PLLA-PTMEG-PLLA triblock copolyester之合成 73 3-1-4 PLLA-PC-PLLA triblock copolyester之合成 74 3-1-5 以PLLA酯粒直接合成PET/PLLA與PBT/PLLA random copolyester 76 3-2 生物材料與石墨烯複合材料之製備與研究 77 3-2-1 實驗藥品 77 3-2-2 研究方法 77 3-2-3 氧化石墨烯與石墨烯之製備 81 3-2-4 以溶液混摻製備石墨烯/聚乙烯醇混合材料 82 3-2-5 以原位聚合法製備熱還原石墨烯/左旋聚乳酸複合材料 83 3-3 結構鑑定與分析 84 3-3-1核磁共振光譜分析 84 3-3-2 拉曼光譜 84 3-3-3 X光電子能譜儀分析 85 3-3-4 X光繞射圖光譜 85 3-3-5紅外光譜分析 86 3-3-6 熱重分析儀 86 3-3-7 掃瞄式熱差分析儀 87 3-3-8膠體滲透層析儀 87 3-3-9極限黏度測定 87 3-3-10 固有黏度測定 88 3-3-11 生物分解性質測試 88 3-3-12形態學觀察分析( SEM、AFM、TEM) 89 PART I. 聚乳酸三嵌段與亂排共聚酯之合成與研究 91 第四章 第一部份之結果與討論 91 4-1 生物可分解三嵌段共聚物 91 4-1-1 PTMEG/PLLA Triblock Copolymer (TMLA) 91 4-1-1-1 TMLA之結構鑑定 91 4-1-1-2 TMLA之分子量分析 94 4-1-1-3 TMLA之極限黏度分析 97 4-1-1-4 TMLA之掃瞄式熱差分析 100 4-1-2 PC/PLLA 與c-PC/PLLA Triblock Copolymer 107 4-1-2-1 PCLA之結構鑑定 108 4-1-2-2 PCLA與c-PCLA之分子量分析 110 4-1-2-3 PCLA之掃瞄式熱差分析 114 4-2 生物分解之亂排共聚物 118 4-2-1 PET/PLLA與PBT/PLLA random copolymer(ETLA、BTLA) 118 4-2-1-1 PET/PLLA與PBT/PLLA之結構鑑定 118 4-2-1-2 PET/PLLA與PBT/PLLA之分子量與黏度分析 122 4-2-1-3 PET/PLLA與PBT/PLLA之反應性討論 123 4-3 生物分解性質測試 125 4-3-1 PCLA與PET/PLLA共聚酯生物分解性測試 125 4-3-2 TMLA三嵌段共聚酯生物分解性測試 130 4-4 第一部份結論 136 PART II. 生物高分子與石墨烯複合材料之製備與研究 138 第五章 第二部份之結果與討論 138 5-1 以溶液混摻製備石墨烯/聚乙烯醇複合材料 138 5-1-1 GO/PVA與rGO/PVA複合材料之型態學 138 5-1-2 rGO/PVA複合材料之導電性分析 144 5-1-3 GO/PVA與rGO/PVA複合材料之結晶性質 147 5-1-4 GO/PVA與rGO/PVA複合材料之熱穩定性分析 149 5-2 以原位聚合法製備石墨烯/左旋聚乳酸複合材料 151 5-2-1 TRG以及GLLA複合材料之結構鑑定 151 5-2-2 GLLA複合材料之熱穩定性與熱性質 163 5-2-3 GLLA複合材料之結晶動力學研究 166 5-2-3-1 結晶成核動力學與整體結晶速率之研究 166 5-2-3-2 長期恆溫結晶之研究 172 5-2-4 GLLA複合材料之導電性分析 176 5-3 第二部份結論 178 第六章 總結 180 第七章 參考文獻 182

    第七章 參考文獻
    [1] U.S. Grains Council, (1998).
    [2] H.M. De Oca, I.M. Ward, Structure and mechanical properties of poly(L-lactic acid) crystals and fibers, J Polym Sci Pol Phys, 45 (2007) 892-902.
    [3] Y. Tokiwa, A. Iwamoto, M. Koyama, Development of biodegradable plastics containing polycaprolactone and or starch, Abstr Pap Am Chem S, 200 (1990) 170-PMSE.
    [4] J.S. Hubbard, J.M. Kendrick, Biodegradation of petroleum chemical extinguisher in soil enhances the degradation of polyethylene-glycol, Environ. Technol., 12 (1991) 689-693.
    [5] C.C. DeMerlis, D.R. Schoneker, Review of the oral toxicity of polyvinyl alcohol (PVA), Food Chem Toxicol, 41 (2003) 319-326.
    [6] W.J. Lee, S.P. Ju, Y.C. Wang, J.G. Chang, Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement, J Chem Phys, 127 (2007).
    [7] K. Holmberg, K. Bergstrom, C. Brink, E. Osterberg, F. Tiberg, J.M. Harris, Effects on protein adsorption, bacterial adhesion and contact-angle of grafting PEG chains to polystyrene, J. Adhes. Sci. Technol., 7 (1993) 503-517.
    [8] Z.G. Ge, H.L. Fan, L.L. Wang, K.K. Zhao, N. Li, Z.J. Shi, Z.X. Jin, Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites, Biomacromolecules, 11 (2010) 2345-2351.
    [9] H.T. Hu, X.B. Wang, J.C. Wang, L. Wan, F.M. Liu, H. Zheng, R. Chen, C.H. Xu, Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization, Chem Phys Lett, 484 (2010) 247-253.
    [10] 伊保內臣貝忠, 高野菊雄, 工程塑膠, 復漢出版社,, (1984) 1-7.
    [11] N. Chand, A. Naik, Abrasive wear studies on maleic anhydride modified polypropylene and polyethylene terephthalate blends, Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol., 221 (2007) 489-499.
    [12] C.M.A. Lopes, M.D.C. Goncalves, M.I. Felisberti, Blends of poly(ethylene terephthalate) and low density polyethylene containing aluminium: a material obtained from packaging recycling, J Appl Polym Sci, 106 (2007) 2524-2535.
    [13] C.H. Jiang, G.J. Zhong, Z.M. Li, Recyclability of in situ microfibrillar poly(ethylene terephthalate)/high-density polyethylene blends, Macromol Mater Eng, 292 (2007) 362-372.
    [14] R. van Dijkhuizen-Radersma, J.R. Roosma, P. Kaim, S. Metairie, F. Peters, J. de Wijn, P.G. Zijlstra, K. de Groot, J.M. Bezemer, Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications, J Biomed Mater Res A, 67A (2003) 1294-1304.
    [15] J. Hu, H. Yu, Y.M. Chen, M.F. Zhu, Study on phase-change characteristics of PET-PEG copolymers, J. Macromol. Sci. Part B-Phys., 45 (2006) 615-621.
    [16] 杜逸虹編著,聚合體學, (1989).
    [17] 洪榮哲編著,實用塑膠學, (1993).
    [18] L.C. Sawyer, D.T. Grubb, in: Polymer Microscopy, Chapman and Hall, London, 1987.
    [19] B.P. Saville, D.A. Helmsley, in: Ed.. Elsesvier Appl. Sci., London, 1989.
    [20] D.S. Achilias, G.Z. Papageorgiou, G.P. Karayannidis, Evaluation of the crystallisation kinetics of poly(propylene terephthalate) using DSC and polarized light microscopy, J. Therm. Anal. Calorim., 86 (2006) 791-795.
    [21] A.A. Natu, E.A. Lofgren, S.A. Jabarin, Effect of morphology on barrier properties of poly(ethylene terephthalate), Polym. Eng. Sci., 45 (2005) 400-409.
    [22] W.H. Cobbs, R.L. Burton, Crystallization of polyethylene terephthalate, Journal of Polymer Science, 10 (1953) 275-290.
    [23] G.Z. Papageorgiou, D.S. Achilias, G.P. Karayannidis, D.N. Bikiaris, C. Roupakias, G. Litsardakis, Step-scan TMDSC and high rate DSC study of the multiple melting behavior of poly(1,3-propylene terephthalate), Eur Polym J, 42 (2006) 434-445.
    [24] Wunderli.B, Structural data on crystalline polymers by thermal-analysis, Journal of Polymer Science Part C-Polymer Symposium, (1973) 29-42.
    [25] 胡德, 高分子物理及機械性質(上), 1990.
    [26] J.G. Smith, C.J. Kibler, B.J. Sublett, Preparation and properties of poly(methylene terephthalates), Journal of Polymer Science Part a-1-Polymer Chemistry, 4 (1966) 1851-&.
    [27] A. Miyagi, Wunderli.B, Superheating and reorganization on melting of poly(ethylene terephthalate), Journal of Polymer Science Part a-2-Polymer Physics, 10 (1972) 1401-&.
    [28] C.C. Lin, S. Baliga, A study on the polycondensation of bis-hydroxyethyl terephthalate, J Appl Polym Sci, 31 (1986) 2483-2489.
    [29] J.M. Besnoin, K.Y. Choi, Identification and characterization of reaction by-products in the polymerization of polyethylene terephthalate, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C29 (1989) 55-81.
    [30] J.F. Kemkes, Direct esterification of terephthalic acid with ethylene glycol under atmospheric pressure, Journal of Polymer Science Part C-Polymer Symposium, (1969) 713-&.
    [31] 台灣經濟部技術處, 2004全球聚碳酸酯市場概況, (2005).
    [32] S.S. Jung, Y.T. Kim, Y.B. Lee, S.H. Shin, D. Kim, H.C. Kim, Measurement of the resonance frequency, the loss factor, and the dynamic Young's modulus in structural steel and polycarbonate by using an acoustic velocity sensor, J Korean Phys Soc, 49 (2006) 1961-1966.
    [33] T.M. Madkour, Polymer Data Handbook, 2nd ed., Oxford University Press, USA, 1999.
    [34] Einhorn A, Ann., 300, 135 (1898).
    [35] C.A. Bischoff, A. von Hedenstrom, Succinic acid-phenyl- and -bezyl-ester, Berichte Der Deutschen Chemischen Gesellschaft, 35 (1902) 4073-4079.
    [36] W.H. Carothers, F.J. Van Natta, Studies on polymerization and ring formation. III. Glycol esters of carbonic acid, J Am Chem Soc, 52 (1930) 314-326.
    [37] 工業技術研究院化學工業研究所, 聚碳酸酯(PC)樹脂的應用、市場與發展策略, (1985).
    [38] G. Malucelli, G. Gozzelino, R. Bongiovanni, A. Priola, Photopolymerization of poly(tetramethylene ether) glycol diacrylates and properties of the obtained networks, Polymer, 37 (1996) 2565-2571.
    [39] L. Häußler, D. Pospiech, K. Eckstein, D. Jehnichen, The influence of multiblock copolymers containing polysulfone and poly(tetramethylene oxide) segments on the phase behavior in polymer blends, Thermochimica Acta, 339 (1999) 87-93.
    [40] L.Z. Liu, W. Xu, H. Li, F.Y. Su, E. Zhou, Crystallization and intriguing morphologies of compatible mixtures of tetrahydrofuran-methyl methacrylate diblock copolymer with poly(tetrahydrofuran), Macromolecules, 30 (1997) 1363-1374.
    [41] T. Shiomi, H. Tsukada, H. Takeshita, K. Takenaka, Y. Tezuka, Crystallization of semicrystalline block copolymers containing a glassy amorphous component, Polymer, 42 (2001) 4997-5004.
    [42] R.A. Phillips, J.M. McKenna, S.L. Cooper, Glass-transition and melting behavior of poly(ether-ester) multiblock copolymers with poly(tetramethylene isophthalate) hard segments, J Polym Sci Pol Phys, 32 (1994) 791-802.
    [43] S.S.G. Co., product, in.
    [44] M. Dadsetan, E.M. Christenson, F. Unger, M. Ausborn, T. Kissel, A. Hiltner, J.M. Anderson, In vivo biocompatibility and biodegradation of poly(ethylene carbonate), J Control Release, 93 (2003) 259-270.
    [45] A. Rivaton, B. Mailhot, J. Soulestin, H. Varghese, J.L. Gardette, Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane-polycarbonate, Polym. Degrad. Stabil., 75 (2002) 17-33.
    [46] A.A. Khardenavis, M.S. Kumar, S.N. Mudliar, T. Chakrabarti, Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly beta-hydroxybutyrate, Bioresour. Technol., 98 (2007) 3579-3584.
    [47] G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments, Biomaterials, 23 (2002) 4131-4141.
    [48] K. Kakehi, M. Kinoshita, S. Yasueda, Hyaluronic acid: separation and biological implications, J. Chromatogr. B, 797 (2003) 347-355.
    [49] L.A. Solchaga, J.Z. Gao, J.E. Dennis, A. Awadallah, M. Lundberg, A.I. Caplan, V.M. Goldberg, Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle, Tissue Eng, 8 (2002) 333-347.
    [50] E. Bell, M. Rosenberg, P. Kemp, R. Gay, G.D. Green, N. Muthukumaran, C. Nolte, Recipes for reconstituting skin, J. Biomech. Eng.-Trans. ASME, 113 (1991) 113-119.
    [51] J.M. Pachence, Collagen-based devices for soft tissue repair, J. Biomed. Mater. Res., 33 (1996) 35-40.
    [52] K. Kuhn, Rapid development of hypertension - clinical relevance, Dustri-Verlag Dr Karl Feistle, Munich Deisenhofen, 1994.
    [53] W.C. Chen, S.S. Cheng, Characterization of immobilized cells in biodegradation of ABS resin manufacturing wastewater, Water Sci. Technol., 34 (1996) 51-58.
    [54] L. Shapiro, S. Cohen, Novel alginate sponges for cell culture and transplantation, Biomaterials, 18 (1997) 583-590.
    [55] S.V. Madihally, H.W.T. Matthew, Porous chitosan scaffolds for tissue engineering, Biomaterials, 20 (1999) 1133-1142.
    [56] J. Wang, Y. Tabata, D.Z. Bi, K. Morimoto, Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres, J Control Release, 73 (2001) 223-231.
    [57] O. Toledano, S. Magdassi, Emulsification and foaming properties of hydrophobically modified gelatin, J Colloid Interf Sci, 200 (1998) 235-240.
    [58] L.F. Wang, S.S. Shen, S.C. Lu, Synthesis and characterization of chondroitin sulfate-methacrylate hydrogels, Carbohyd Polym, 52 (2003) 389-396.
    [59] J.P. Bali, H. Cousse, E. Neuzil, Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system, Semin. Arthritis Rheum., 31 (2001) 58-68.
    [60] J.M. Pachence, J. Kohn, In Principle of Tissue engineering, 2nd ed., Academic Press, San Diego, 2000.
    [61] Park K and Park H, Biodegradable Hydrogels for Drug Delivery, 13-34, (1993).
    [62] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem Rev, 99 (1999) 3181-3198.
    [63] P. Beck, J. Kreuter, R. Reszka, I. Fichtner, Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumor-models, Journal of microencapsulation, 10 (1993) 101-114.
    [64] Y.H. Zhao, Y. Zhao, X.B. Yuan, J. Sheng, Synthesis and characterization of poly(L-lactic acid)-b-poly(ethylene terephthalate-co-sebacate)-b-poly(L-lactic acid) copolyesters, J Appl Polym Sci, 106 (2007) 161-168.
    [65] C. Zhang, L.Q. Liao, S.Q. Gong, Microwave-assisted synthesis of PLLA-PEG-PLLA triblock copolymers, Macromol Rapid Comm, 28 (2007) 422-427.
    [66] A.J. Muller, R.V. Castillo, M. Hillmyer, Nucleation and crystallization of PLDA-b-PE and PLLA-b-PE diblock copolymers, Macromol Symp, 242 (2006) 174-181.
    [67] 興技生物科技公司, 產品介紹, in.
    [68] A. Schindler, D. Harper, Polylactide .2. Viscosity-molecular weight relationships and unperturbed chain dimensions, J Polym Sci Pol Chem, 17 (1979) 2593-2599.
    [69] Y.J. Du, P.J. Lemstra, A.J. Nijenhuis, H.A.M. Vanaert, C. Bastiaansen, ABA type copolymers of lactide with poly(ethylene glycol) - kinetic, mechanistic, and model studies, Macromolecules, 28 (1995) 2124-2132.
    [70] X.X. Li, J.B. Yin, Z.Y. Yu, S.F. Yan, X.C. Lu, Y.J. Wang, B. Cao, X.S. Chen, Isothermal Crystallization Behavior of Poly(L-lactic acid)/Organo-Montmorillonite Nanocomposites, Polym. Compos., 30 (2009) 1338-1344.
    [71] Z.M. Liu, S.Y. Lee, S. Sarun, S. Moeller, M. Schnabelrauch, T. Groth, Biocompatibility of Poly(L-lactide) Films Modified with Poly(ethylene imine) and Polyelectrolyte Multilayers, J. Biomater. Sci.-Polym. Ed., 21 (2010) 893-912.
    [72] Z.H. Zhou, X.P. Liu, L.H. Lin, Preparation and Biocompatibility of Poly(L-lactide-co-glycolide) Scaffold Materials for Nerve Conduits, Des. Monomers Polym., 11 (2008) 447-456.
    [73] H. Tsuji, T. Ishizaka, Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide), Int J Biol Macromol, 29 (2001) 83-89.
    [74] M. Vert, J. Mauduit, S. Li, Biodegradation of PLA/GA polymers: increasing complexity, Biomaterials, 15 (1994) 1209-1213.
    [75] 李亦淇, 生物可降解之左旋聚乳酸薄膜結構改變於生醫材料之應用, 國立臺灣大學醫學工程學研究所碩士論文, 碩士論文 (2002).
    [76] Y. Watanabe, H. Shirahama, H. Yasuda, Syntheses of random and block copolymers of lactides with 1,5-dioxepan-2-one and their biodegradability, Reactive and Functional Polymers, 59 (2004) 211-224.
    [77] C.H. Wang, K.R. Fan, G.H. Hsiue, Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers, Biomaterials, 26 (2005) 2803-2811.
    [78] R.E. Drumright, P.R. Gruber, D.E. Henton, Polylactic acid technology, Adv Mater, 12 (2000) 1841-1846.
    [79] K.H. Lam, A.J. Nijenhuis, H. Bartels, A.R. Postema, M.F. Jonkman, A.J. Pennings, P. Nieuwenhuis, REINFORCED POLY(L-LACTIC ACID) FIBERS AS SUTURE MATERIAL, J. Appl. Biomater., 6 (1995) 191-197.
    [80] L.E. Freed, J.C. Marquis, A. Nohria, J. Emmanual, A.G. Mikos, R. Langer, Neocartilage formation invitro and invivo using cells cultured on synthetic biodegradable polymers, J. Biomed. Mater. Res., 27 (1993) 11-23.
    [81] F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma, S. Wang, Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering, Biomaterials, 25 (2004) 1891-1900.
    [82] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, 26 (2005) 2603-2610.
    [83] R.K. Kulkarni, K.C. Pani, C. Neuman, F. Leonard, Polylactic acid for surgical implants, Arch. Surg., 93 (1966) 839-&.
    [84] X.Y. Yuan, A.F.T. Mak, K.W. Kwok, B.K.O. Yung, K.D. Yao, Characterization of poly(L-lactic acid) fibers produced by melt spinning, J Appl Polym Sci, 81 (2001) 251-260.
    [85] M. van Dijk, D.C. Tunc, T.H. Smit, P. Higham, E.H. Burger, P. Wuisman, In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages, J. Biomed. Mater. Res., 63 (2002) 752-759.
    [86] H.S. Kim, Y.S. Chae, B.H. Park, J.S. Yoon, M. Kang, H.J. Jin, Thermal and electrical conductivity of poly(L-lactide)/multiwalled carbon nanotube nanocomposites, Curr. Appl. Phys., 8 (2008) 803-806.
    [87] K.H. Schmedlen, K.S. Masters, J.L. West, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering, Biomaterials, 23 (2002) 4325-4332.
    [88] W.O. Herrmann, W. Haehnel, Poly-vinyl alcohol, Berichte Der Deutschen Chemischen Gesellschaft, 60 (1927) 1658-1663.
    [89] S.J. Kim, K.J. Lee, I.Y. Kim, Y.M. Lee, S.I. Kim, Swelling kinetics of modified poly(vinyl alcohol) hydrogels, J Appl Polym Sci, 90 (2003) 3310-3313.
    [90] J. Krzeminski, H. Molisaktolwinska, The structure of water-swollen poly(vinyl alcohol) and the swelling mechanism, Journal of Macromolecular Science-Chemistry, A28 (1991) 413-429.
    [91] V.S. Praptowidodo, Influence of swelling on water transport through PVA-based membrane, J. Mol. Struct., 739 (2005) 207-212.
    [92] R. Morita, R. Honda, Y. Takahashi, Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS) I. Design of SCRS and its release controlling factor, J Control Release, 63 (2000) 297-304.
    [93] F.J. Liou, Y.J. Wang, Preparation and characterization of crosslinked and heat-treated PVA-MA films, J Appl Polym Sci, 59 (1996) 1395-1403.
    [94] Y.S. Pan, D.S. Xiong, R.Y. Ma, Preparation and swelling behavior of polyvinyl alcohol physiological saline gel, J. Cent. South Univ. Technol., 13 (2006) 27-31.
    [95] S.K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar, Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake, J Control Release, 82 (2002) 105-114.
    [96] N. Wang, X.S. Wu, J.K. Li, A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery, Pharmaceutical research, 16 (1999) 1430-1435.
    [97] X.Q. Wang, T. Yucel, Q. Lu, X. Hu, D.L. Kaplan, Silk nanospheres and microspheres from silk/pva blend films for drug delivery, Biomaterials, 31 (2010) 1025-1035.
    [98] J.M. Yang, W.Y. Su, T.L. Leu, M.C. Yang, Evaluation of chitosan/PVA blended hydrogel membranes, J Membrane Sci, 236 (2004) 39-51.
    [99] W.Y. Chuang, T.H. Young, C.H. Yao, W.Y. Chiu, Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro, Biomaterials, 20 (1999) 1479-1487.
    [100] T.H. Young, N.K. Yao, R.F. Chang, L.W. Chen, Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets, Biomaterials, 17 (1996) 2139-2145.
    [101] T.H. Young, W.Y. Chuang, N.K. Yao, L.W. Chen, Use of a diffusion model for assessing the performance of poly(vinyl alcohol) bioartificial pancreases, J. Biomed. Mater. Res., 40 (1998) 385-391.
    [102] W. Paul, C.P. Sharma, Acetylsalicylic acid loaded poly(vinyl alcohol) hemodialysis membranes: Effect of drug release on blood compatibility and permeability, J. Biomater. Sci.-Polym. Ed., 8 (1997) 755-764.
    [103] P. Giusti, L. Lazzeri, N. Barbani, P. Narducci, A. Bonaretti, M. Palla, L. Lelli, Hydrogels of poly(vinyl alcohol) and collagen as new bioartificial materials .1. Physical and morphological characterization, J. Mater. Sci.-Mater. Med., 4 (1993) 538-542.
    [104] M.G. Cascone, B. Sim, S. Downes, Blends of synthetic and natural polymers as drug-delivery systems for growth-hormone, Biomaterials, 16 (1995) 569-574.
    [105] A. Yamauchi, Y. Matsuzawa, Y. Hara, S. Kamiya, K. Nishioka, M. Saishin, S. Nakao, Behavior of poly(vinyl-alcohol) hydrogel in the vitreous body of albino rabbits .3, Folia Ophthalmologica Japonica, 30 (1979) 385-389.
    [106] K. Burczak, E. Gamian, A. Kochman, Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas, Biomaterials, 17 (1996) 2351-2356.
    [107] M. Mahmoudi, M.A. Shokrgozar, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, H. Vali, U.O. Hafeli, S. Bonakdar, Multiphysics Flow Modeling and in Vitro Toxicity of Iron Oxide Nanoparticles Coated with Poly(vinyl alcohol), J Phys Chem C, 113 (2009) 2322-2331.
    [108] F. Yoshii, Y. Zhanshan, K. Isobe, K. Shinozaki, K. Makuuchi, Electron beam crosslinked PEO and PEO PVA hydrogels for wound dressing, Radiat. Phys. Chem., 55 (1999) 133-138.
    [109] K.H. Hong, Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings, Polym. Eng. Sci., 47 (2007) 43-49.
    [110] M. Kokabi, M. Sirousazar, Z.M. Hassan, PVA-clay nanocomposite hydrogels for wound dressing, Eur Polym J, 43 (2007) 773-781.
    [111] Y.S. Zhou, D.Z. Yang, X.M. Chen, Q. Xu, F.M. Lu, J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration, Biomacromolecules, 9 (2008) 349-354.
    [112] T.D. Gierke, Ionic clustering in nafion perfluorosulfonic acid membranes and its relationship to hydroxyl rejection and chlor-alkali current efficiency, J. Electrochem. Soc., 124 (1977) C319-C319.
    [113] R.D. Armstrong, M.D. Clarke, The effect of traces of water on PEO4.5LiCF3SO3 films, Solid State Ionics, 11 (1984) 305-306.
    [114] W.L. Xu, C.P. Liu, X.Z. Xue, Y. Su, Y. Lv, W. Xing, T.H. Lu, New proton exchange membranes based on poly (vinyl alcohol) for DMFCs, Solid State Ionics, 171 (2004) 121-127.
    [115] J. Fu, H.Y. Zhang, J.L. Qiao, J.X. Ma, Solid alkaline electrolyte membranes based on poly(vinyl alcohol) for potential use in fuel cells, Acta Polym Sin, (2011) 701-708.
    [116] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J Membrane Sci, 377 (2011) 1-35.
    [117] Y. Chiba, Y. Tominaga, Poly(ethylene-co-vinyl alcohol)/sulfonated mesoporous organosilicate composites as proton-conductive membranes, J. Power Sources, 203 (2012) 42-47.
    [118] A. Martinez-Felipe, C. Moliner-Estopinan, C.T. Imrie, A. Ribes-Greus, Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells, J Appl Polym Sci, 124 (2012) 1000-1011.
    [119] A. Anis, S.M. Al-Zahrani, A.K. Banthia, S. Bandyopadhyay, Fabrication and Characterization of Novel Crosslinked Composite Membranes for Direct Methanol Fuel Cell Application - Part II. Poly (Vinyl Alcohol-Co-Vinyl Acetate-Co-Itaconic Acid)/Silicotungstic Acid Based Membranes, Int J Electrochem Sc, 6 (2011) 2652-2671.
    [120] U. Thanganathan, J. Parrondo, B. Rambabu, Nanocomposite hybrid membranes containing polyvinyl alcohol or poly(tetramethylene oxide) for fuel cell applications, J. Appl. Electrochem., 41 (2011) 617-622.
    [121] C.C. Yang, S.S. Chiu, S.C. Kuo, T.H. Liou, Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells, J. Power Sources, 199 (2012) 37-45.
    [122] T. Chakrabarty, A.K. Singh, V.K. Shahi, Zwitterionic silica copolymer based crosslinked organic-inorganic hybrid polymer electrolyte membranes for fuel cell applications, RSC Adv., 2 (2012) 1949-1961.
    [123] R.K. Nagarale, W. Shin, P.K. Singh, Progress in ionic organic-inorganic composite membranes for fuel cell applications, Polym Chem-Uk, 1 (2010) 388-408.
    [124] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448 (2007) 457-460.
    [125] S. Ghosh, S. Subrina, V. Goyal, D.L. Nika, E.P. Pokatilov, A.A. Balandin, Ieee, Extraordinary thermal conductivity of graphene: Possibility of thermal management applications, in: 2010 12th Ieee Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Ieee, New York, 2010.
    [126] M.S. Fuhrer, C.N. Lau, A.H. MacDonald, Graphene: Materially Better Carbon, MRS Bull., 35 (2010) 289-295.
    [127] X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat Nanotechnol, 3 (2008) 538-542.
    [128] C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett, 7 (2007) 3499-3503.
    [129] A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett, 9 (2009) 30-35.
    [130] J. Campos-Delgado, J.M. Romo-Herrera, X.T. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z.F. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp(2) carbon: Crystalline graphene nanoribbons, Nano Lett, 8 (2008) 2773-2778.
    [131] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
    [132] D.C. Luo, G.X. Zhang, J.F. Liu, X.M. Sun, Evaluation Criteria for Reduced Graphene Oxide, J Phys Chem C, 115 (2011) 11327-11335.
    [133] W.F. Chen, L.F. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, 48 (2010) 1146-1152.
    [134] G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, Acs Nano, 2 (2008) 1487-1491.
    [135] K. Vinodgopal, B. Neppolian, I.V. Lightcap, F. Grieser, M. Ashokkumar, P.V. Kamat, Sonolytic Design of Graphene-Au Nanocomposites. Simultaneous and Sequential Reduction of Graphene Oxide and Au(III), J Phys Chem Lett, 1 (2010) 1987-1993.
    [136] M. Baraket, S.G. Walton, Z. Wei, E.H. Lock, J.T. Robinson, P. Sheehan, Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures, Carbon, 48 (2010) 3382-3390.
    [137] E.C. Salas, Z.Z. Sun, A. Luttge, J.M. Tour, Reduction of Graphene Oxide via Bacterial Respiration, Acs Nano, 4 (2010) 4852-4856.
    [138] Y. Wang, Z.X. Shi, J. Yin, Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites, Acs Appl Mater Inter, 3 (2011) 1127-1133.
    [139] T.N. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J.W. Feng, Q.A. Fu, A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite, Nanotechnology, 22 (2011).
    [140] J.F. Che, L.Y. Shen, Y.H. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion, J Mater Chem, 20 (2010) 1722-1727.
    [141] M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J Phys Chem C, 114 (2010) 6426-6432.
    [142] C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets, Acs Nano, 4 (2010) 2429-2437.
    [143] J.B. Liu, S.H. Fu, B. Yuan, Y.L. Li, Z.X. Deng, Toward a Universal "Adhesive Nanosheet" for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide, J Am Chem Soc, 132 (2010) 7279-+.
    [144] Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, J. Feng, Y.M. Ren, L.P. Song, F. Wei, Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide, Acs Nano, 5 (2011) 191-198.
    [145] Z.J. Fan, K. Wang, T. Wei, J. Yan, L.P. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon, 48 (2010) 1686-1689.
    [146] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.
    [147] J.J. Liang, Y. Wang, Y. Huang, Y.F. Ma, Z.F. Liu, F.M. Cai, C.D. Zhang, H.J. Gao, Y.S. Chen, Electromagnetic interference shielding of graphene/epoxy composites, Carbon, 47 (2009) 922-925.
    [148] S. Ansari, E.P. Giannelis, Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites, J Polym Sci Pol Phys, 47 (2009) 888-897.
    [149] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J Am Chem Soc, 80 (1958) 1339-1339.
    [150] X.M. Yang, L.A. Li, S.M. Shang, X.M. Tao, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites, Polymer, 51 (2010) 3431-3435.
    [151] T. Zhou, F. Chen, C. Tang, H. Bai, Q. Zhang, H. Deng, Q. Fu, The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite Compos Sci Technol, 71 (2011) 1266-1270.
    [152] R.C. Feng, G.H. Guan, W. Zhou, C.C. Li, D. Zhang, Y.N. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide, J Mater Chem, 21 (2011) 3931-3939.
    [153] A. Formhal, US patent 1,975,504, (1934).
    [154] S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, F. Ko, Regeneration of Bombyx mori silk by electrospinning - part 1: processing parameters and geometric properties, Polymer, 44 (2003) 5721-5727.
    [155] S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, F. Ko, Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology, Polymer, 45 (2004) 3701-3708.
    [156] A. Kostruba, A. Zaichenko, N. Mitina, K. Rayevska, K. Hertsyk, Kinetics of the formation and structure of oligoperoxide nanolayers and grafted polymer brushes on glass plate surface, Cent Eur J Phys, 6 (2008) 454-461.
    [157] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261-272.
    [158] E.R. Kenawy, J.M. Layman, J.R. Watkins, G.L. Bowlin, J.A. Matthews, D.G. Simpson, G.E. Wnek, Electrospinning of poly(ethylene-co-vinyl alcohol) fibers, Biomaterials, 24 (2003) 907-913.
    [159] M. Cloupeau, B. Prunetfoch, Electrostatic spraying of liquids in cone-jet mode, J. Electrost., 22 (1989) 135-159.
    [160] H.W. Kim, H.E. Kim, Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics, J. Biomed. Mater. Res. Part B, 77B (2006) 323-328.
    [161] N.L. Nerurkar, D.M. Elliott, R.L. Mauck, Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering, J. Orthop. Res., 25 (2007) 1018-1028.
    [162] C.H. Kim, M.S. Khil, H.Y. Kim, H.U. Lee, K.Y. Jahng, An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation, J. Biomed. Mater. Res. Part B, 78B (2006) 283-290.
    [163] Z.Y. Liu, D.D.L. Sun, P. Guo, J.O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett, 7 (2007) 1081-1085.
    [164] H. Dong, W.E. Jones, Preparation of submicron polypyrrole/poly(methyl methacrylate) coaxial fibers and conversion to polypyrrole tubes and carbon tubes, Langmuir, 22 (2006) 11384-11387.
    [165] T. Weigel, G. Schinkel, A. Lendlein, Design and preparation of polymeric scaffolds for tissue engineering, Expert Rev. Med. Devices, 3 (2006) 835-851.
    [166] H. Tsuji, M. Nakano, M. Hashimoto, K. Takashima, S. Katsura, A. Mizuno, Electrospinning of poly(lactic acid) stereocomplex nanofibers, Biomacromolecules, 7 (2006) 3316-3320.
    [167] M.L. Ma, V. Krikorian, J.H. Yu, E.L. Thomas, G.C. Rutledge, Electrospun polymer nanofibers with internal periodic structure obtained by microphase separation of cylindrically confined block copolymers, Nano Lett, 6 (2006) 2969-2972.
    [168] B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials, 25 (2004) 1289-1297.
    [169] K.S. Rho, L. Jeong, G. Lee, B.M. Seo, Y.J. Park, S.D. Hong, S. Roh, J.J. Cho, W.H. Park, B.M. Min, Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials, 27 (2006) 1452-1461.
    [170] J.A. Henry, M. Simonet, A. Pandit, P. Neuenschwander, Characterization of a slowly degrading biodegradable polyesterurethane for tissue engineering scaffolds, J Biomed Mater Res A, 82A (2007) 669-679.
    [171] D.J. David, T.F. Sincock, Estimation of miscibility of polymer blends using the solubility parameter concept, Polymer, 33 (1992) 4505-4514.
    [172] J. Blomqvist, B. Mannfors, L.O. Pietila, Amorphous cell studies of polyglycolic, poly(L-lactic), poly(L,D-lactic) and poly(glycolic/L-lactic) acids, Polymer, 43 (2002) 4571-4583.
    [173] D.F. Williams, Enzymic hydrolysis of polylactic acid Engineering in Medicine, 10 (1981) 5-7.
    [174] H. Tsuji, S. Miyauchi, Poly(L-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(L-lactide) films with different crystallinities and a fixed crystalline thickness, Polymer, 42 (2001) 4463-4467.
    [175] K. Kurokawa, K. Yamashita, Y. Doi, H. Abe, Surface properties and enzymatic degradation of end-capped poly(L-lactide), Polym. Degrad. Stabil., 91 (2006) 1300-1310.
    [176] H. Tsuji, H. Muramatsu, Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol), Polym. Degrad. Stabil., 71 (2001) 403-413.
    [177] H. Tsuji, T. Ishida, Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions, J Appl Polym Sci, 87 (2003) 1628-1633.
    [178] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228-240.
    [179] X. Zhao, Q.H. Zhang, D.J. Chen, P. Lu, Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites, Macromolecules, 43 (2010) 2357-2363.
    [180] K. Nakane, T. Yamashita, K. Iwakura, F. Suzuki, Properties and structure of poly(vinyl alcohol)/silica composites, J Appl Polym Sci, 74 (1999) 133-138.
    [181] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett, 8 (2008) 902-907.
    [182] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 446 (2007) 60-63.
    [183] R.J. Nemanich, S.A. Solin, 1st-order and 2nd-order Raman-scattering from finite-size crystals of graphite, Phys Rev B, 20 (1979) 392-401.
    [184] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
    [185] P. Gao, J.C. Liu, S. Lee, T. Zhang, D.D. Sun, High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution, J Mater Chem, 22 (2012) 2292-2298.
    [186] M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang, S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J Mater Chem, 19 (2009) 7098-7105.
    [187] R. Sharma, J.H. Baik, C.J. Perera, M.S. Strano, Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries, Nano Lett, 10 (2010) 398-405.
    [188] M. Nakagawa, F. Teraoka, S. Fujimoto, Y. Hamada, H. Kibayashi, J. Takahashi, Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment, J Biomed Mater Res A, 77A (2006) 112-118.
    [189] B.M.P. Ferreira, L.M.P. Pinheiro, P.A.P. Nascente, M.J. Ferreira, E.A.R. Duek, Plasma surface treatments of poly(L-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Mat Sci Eng C-Bio S, 29 (2009) 806-813.
    [190] X.C. Zhang, D.A. Macdonald, M.F.A. Goosen, K.B. McAuley, Mechanism of lactide polymerization in the presence of stannous octoate - the effect of hydroxy and carboxylic-acid substances, J Polym Sci Pol Chem, 32 (1994) 2965-2970.
    [191] H.R. Kricheldorf, Tin-initiated polymerizations of lactones: Mechanistic and preparative aspects, Macromol Symp, 153 (2000) 55-65.
    [192] H.R. Kricheldorf, I. Kreisersaunders, C. Boettcher, POLYLACTONES .31. SN(II)OCTOATE-INITIATED POLYMERIZATION OF L-LACTIDE - A MECHANISTIC STUDY, Polymer, 36 (1995) 1253-1259.
    [193] W. Hoogsteen, A.R. Postema, A.J. Pennings, G. Tenbrinke, P. Zugenmaier, CRYSTAL-STRUCTURE, CONFORMATION, AND MORPHOLOGY OF SOLUTION-SPUN POLY(L-LACTIDE) FIBERS, Macromolecules, 23 (1990) 634-642.
    [194] D. Garlotta, A literature review of poly(lactic acid), J. Polym. Environ., 9 (2001) 63-84.
    [195] Y. He, Z.Y. Fan, Y.F. Hu, T. Wu, J. Wei, S.M. Li, DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights, Eur Polym J, 43 (2007) 4431-4439.
    [196] M. Avrami, Kinetics of phase change I - General theory, J Chem Phys, 7 (1939) 1103-1112.
    [197] M. Avrami, Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III, J Chem Phys, 9 (1941) 177-184.
    [198] Y.H. Cai, S.F. Yan, J.B. Yin, Y.Q. Fan, X.S. Chen, Crystallization Behavior of Biodegradable Poly(L-lactic acid) Filled with a Powerful Nucleating Agent: N,N '-Bis(benzoyl) Suberic Acid Dihydrazide, J Appl Polym Sci, 121 (2011) 1408-1416.
    [199] S. Iannace, L. Nicolais, Isothermal crystallization and chain mobility of poly(L-lactide), J Appl Polym Sci, 64 (1997) 911-919.
    [200] R.G. Alamo, L. Mandelkern, Crystallization kinetics of random ethylene copolymers, Macromolecules, 24 (1991) 6480-6493.
    [201] Z.K. Hong, P.B. Zhang, C.L. He, X.Y. Qiu, A.X. Liu, L. Chen, X.S. Chen, X.B. Jing, Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility, Biomaterials, 26 (2005) 6296-6304.
    [202] L. Li, Y. Li, J.S. Li, A.F.T. Mak, F. Ko, L. Qin, Cytotoxicity and Cell Adhesion of PLLA/keratin Composite Fibrous Membranes, in: C.T. Lim, J.C.H. Goh (Eds.) 13th International Conference on Biomedical Engineering, Vols 1-3, Springer, New York, 2009, pp. 1492-1495.
    [203] Y.T. Shieh, Y.K. Twu, C.C. Su, R.H. Lin, G.L. Liu, Crystallization Kinetics Study of Poly(L-lactic acid)/Carbon Nanotubes Nanocomposites, J Polym Sci Pol Phys, 48 (2010) 983-989.
    [204] W.Y. Zhou, B. Duan, M. Wang, W.L. Cheung, Crystallization Kinetics of Poly(L-Lactide)/Carbonated Hydroxyapatite Nanocomposite Microspheres, J Appl Polym Sci, 113 (2009) 4100-4115.
    [205] Y.J. Huang, Y.W. Qin, Y. Zhou, H. Niu, Z.Z. Yu, J.Y. Dong, Polypropylene/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler-Natta Polymerization, Chem Mater, 22 (2010) 4096-4102.
    [206] J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC, Macromolecules, 41 (2008) 1352-1357.
    [207] M. Yasuniwa, S. Tsubakihara, Y. Sugimoto, C. Nakafuku, Thermal analysis of the double-melting behavior of poly(L-lactic acid), J Polym Sci Pol Phys, 42 (2004) 25-32.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE