簡易檢索 / 詳目顯示

研究生: 蔡孟霖
Tsai, Meng-Lin
論文名稱: 二維材料用於光伏元件的製作與鑑定之研究
Fabrication and Characterization of 2D Material Based Photovoltaic Devices
指導教授: 陳力俊
Chen, Lih-Juann
何志浩
He, Jr-Hau
口試委員: 嚴大任
Yen, Ta-Jen
鄭晃忠
Cheng, Huang-Chung
蔡定平
Tsai, Din-Ping
吳志毅
Wu, Chih-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 二維材料光伏元件太陽能電池異質接面
外文關鍵詞: 2d material, photovoltaic device, solar cell, heterojunction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的為針對近年來熱門的二維材料(例如石墨烯、二硫化鉬及二硒化鎢)的光伏特性進行系統性的研究,並與目前商用材料(例如矽)結合來製作元件,以增加未來在半導體及能源產業量產的機會。

    論文主題針對二維材料包括二硫化鉬/矽的異質接面、混合型太陽能電池摻雜石墨烯量子點及二硫化鉬/二硒化鎢單層側向異質接面進行材料鑑定與光伏元件製程,為發展下一世代的奈米能源提供相關應用。

    我們成功利用大面積單層二硫化鉬及p型矽製作第二型的異質接面光伏元件。其中單層二硫化鉬和p型矽在界面之間形成內建電場,可用來幫助光激發的載子有效分離,並達到5.23%的能量轉換效率。接著我們將石墨烯量子點混於PEDOT:PSS之中,有效利用石墨烯光子降轉換和增加導電度的特性,在矽/PEDOT:PSS混合型太陽能電池達到13.22%的效率。其中短路電流和填充因子分別從32.11提升到36.26 mA/cm2以及從62.85%提升到63.87%。最後我們研究二硒化鎢/二硫化鉬單層側向p-n異質接面並製作成元件。此元件達到0.26 A/W的光響應並具有很好的全方向性光偵測功能。此異質接面所形成的二極體理想因子可達1.25,並具有明顯的閘極控制功能。另外此元件展現快速響應、弱光偵測及高溫操作能力。


    The aim of this thesis is to provide systematic exploration of the photovoltaic characteristics in most popular 2D materials (graphene, MoS2, and WSe2) in recent years for designing devices compatible with conventional materials (such as Si) to expand the opportunity for mass production in the future semiconductor and energy industries.

    In this thesis, the fabrication and characterization of 2D material based photovoltaic devices including MoS2/Si heterojunction, graphene quantum dot in hybrid solar cells, and MoS2/WSe2 lateral heterojunction have been achieved for developing the nanoscale energy applications for the next generation.

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photo-generated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%.

    By employing graphene quantum dots in PEDOT:PSS, we have accomplished the efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS. The short circuit current and the fill factor are increased from 32.11 to 36.26 mA/cm2 and 62.85% to 63.87%, respectively.

    Finally, electrical and optical properties of lateral monolayer WSe2-MoS2 p-n heterojunction were characterized to demonstrate a high responsivity of 0.26 A/W with excellent omnidirectional photodetection capability. The heterojunction functioning as a diode exhibits prominent gate-tuning behavior with an ideality factor of 1.25. In addition, ultrafast photoresponse, low-light detectability, and high-temperature operation have been achieved.

    Contents Acknowledgment............................................1 Abstract..................................................3 Contents..................................................6 Chapter 1 Introduction...................................…8 1.1 2D Transitional Metal Dichalcogenides........11 1.2 Graphene Quantum Dots........................15 1.3 2D Lateral Heterojunction....................20 Chapter 2 Experimental Procedures........................23 2.1 Preparation of MoS2..........................23 2.2 Fabrication and Characterization of MoS2/Si Heterojunction Solar Cells...............................24 2.3 Preparation and Characterization of Graphene Quantum Dots.....................................................26 2.4 Fabrication and Characterization of Hybrid Solar Cells with Graphene Quantum Dots...............................27 2.5 Growth and Characterization of MoS2/WSe2 Lateral Heterojunction...........................................29 2.6 Fabrication and Characterization of MoS2/WSe2 Lateral Heterojunction Devices...................................32 Chapter 3 Results and Discussion.........................33 3.1 Monolayer MoS2 Heterojunction Solar Cells....................................................33 3.2 Si Hybrid Solar Cells with up to 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots ......................46 3.3 Electrical Properties of Monolayer Lateral p-n Heterojunction...........................................59 Chapter 4 Summary and Conclusions........................65 Chapter 5 Future Prospects...............................67 5.1 All 2D Lateral Devices.......................67 5.2 Substitutionally Doped 2D Devices............69 References...............................................70 Publication List.........................................83

    1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147-150 (2011)
    2. P. K. Yang, W. Y. Chang, P. Y. Teng, S. F. Jeng, S. J. Lin, P. W. Chiu, J. H. He, “Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects,” Proc. IEEE 101, 1732-1739 (2013)
    3. D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li, J. H. He, “Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments,” ACS Nano 7, 3905-3911 (2013)
    4. D. S. Tsai, D. H. Lien, M. L. Tsai, S. H. Su, K. M. Chen, J. J. Ke, Y. C. Yu, L. J. Li, J. H. He, “Trilayered MoS2 metal-semiconductor-metal photodetectors: photogain and radiation resistance,” IEEE Select. Topics Quantum Electron. 20, 3800206 (2014)
    5. W. Zhang, C. P. Chu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014)
    6. W. Zhang, J. K. Huang, C. H. Chen, Y. H. Chang, Y. J. Cheng, L. J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456-3461 (2013)
    7. Q. Xiang, J. Yu, M. Jaroniec, “Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles,” J. Am. Chem. Soc. 134, 6575-6578 (2012)
    8. Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, “Layered nanojunctions for hydrogen-evolution catalysis,” Angew. Chem. Int. Ed. 52, 3621-3625 (2013)
    9. H. Wang, Z. Lu, D. Kong, J. Sun, T. M. Hymel, Y. Cui, “Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution,” ACS Nano 8, 4940-4947 (2014)
    10. S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, A. Javey, “MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,” Nano Lett. 14, 1337-1342 (2014)
    11. M. Bernardi, M. Palummo, J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13, 3664-3670 (2013)
    12. L. Y. Gan, Q. Zhang, Y. Cheng, U. Schwingenschlögl, “Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers,” J. Phys. Chem. Lett. 5, 1445-1449 (2014)
    13. J. Feng, X. Qian, C. W. Huang, J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nature Photon. 6, 866-872 (2012)
    14. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9, 268-272 (2014)
    15. S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589-2594 (2014)
    16. M. Shanmugam, C. A. Durcan, B. Yu, “Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells,” Nanoscale 4, 7399-7405 (2012)
    17. M. Shanmugam, T. Bansal, C. A. Durcan, B. Yu, “Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexythiophene bulk heterojunction solar cell,” Appl. Phys. Lett. 100, 153901 (2012)
    18. X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S. T. Lee, H. Zhang, B. Sun, “A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells,” Adv. Energy Mater. 3, 1262-1268 (2013)
    19. H. P. Wang, T. Y. Lin, C. W. Hsu, M. L. Tsai, C. H. Huang, W. R. Wei, M. Y. Huang, Y. J. Chien, P. C. Yang, C. W. Liu, L. J. Chou, J. H. He, “Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions,” ACS Nano 7, 9325-9335 (2013)
    20. H. P. Wang, T. Y. Lin, M. L. Tsai, W. C. Tu, M. Y. Huang, P. C. Yang, Y. J. Chien, C. W. Liu, Y. L. Chueh, J. H. He, “Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures consisting of grooves and pyramids,” ACS Nano 8, 2659-2669 (2014)
    21. S. H. Tsai, H. C. Chang, H. H. Wang, S. Y. Chen, C. A. Lin, S. A. Chen, Y. L. Chueh, J. H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5, 9501-9510 (2011)
    22. W. R. Wei, M. L. Tsai, S. T. Ho, S. H. Tai, C. R. Ho, S. H. Tsai, C. W. Liu, R. J. Chung, J. H. He, “Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures,” Nano Lett. 13, 3658-3663 (2013)
    23. K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, L. J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12, 1538-1544 (2012)
    24. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320-2325 (2012)
    25. Y. C. Lin, W. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, C. W. Chu, L. J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,” Nanoscale 4, 6637-6641 (2012)
    26. C. Y. Hsu, D. H. Lien, S. Y. Lu, C. Y. Chen, C. F. Kang, Y. L. Chueh, W. K. Hsu, J. H. He, “Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core-shell nanowire geometry,” ACS Nano 6, 6687-6692 (2012)
    27. D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5, 7748-7753 (2011)
    28. Y. H. Hsiao, C. Y. Chen, L. C. Huang, G. J. Lin, D. H. Lien, J. J. Huang, J. H. He, “Light extraction enhancement with radiation pattern shaping of light emitting diodes by waveguiding nanorods with impedance-matching tips,” Nanoscale 6, 2624-2628 (2014)
    29. C. H. Ho, D. H. Lien, Y. H. Hsiao, M. S. Tsai, D. Chang, K. Y. Lai, C. C. Sun, J. H. He, “Enhanced light-extraction from hierarchical surfaces consisting of p-GaN microdomes and SiO2 nanorods for GaN-based light-emitting diodes,” Appl. Phys. Lett. 103, 161104 (2013)
    30. H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, J. H. He, “Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir 26, 12855-12858 (2010)
    31. Y. R. Lin, K. Y. Lai, H. P. Wang, J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale 2, 2765-2768 (2010)
    32. Y. R. Lin, H. P. Wang, C. A. Lin, J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys. 106, 114310 (2009)
    33. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12, 2971-2976 (2012)
    34. S. H. Tsai, H. C. Chang, H. H. Wang, S. Y. Chen, C. A. Lin, S. A. Chen, Y. L. Chueh, J. H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5, 9501-9510 (2011)
    35. P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7, 10780-10787 (2013)
    36. Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, H. Shirai, “High efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100, 183901 (2012)
    37. Y. Yang, H. L. Zhang, G. Zhu, S. Lee, Z. H. Lin, Z. L. Wang, “Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies,” ACS Nano 7, 785-790 (2013)
    38. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10, 3823-3827 (2010)
    39. C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, Y. F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4, 5849-5854 (2010)
    40. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, J. H. He, “Nanowire arrays with controlled structure profile for maximizing optical collection efficiency,” Energy Environ. Sci. 4, 2863-2869 (2011)
    41. L. Zhao, Z. Lin, “Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells,” Adv. Mater. 24, 4353-4368 (2012)
    42. “$1/W Photovoltaic System,” U.S. Department of Energy, Washington, DC (2010)
    43. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6, 5102-5110 (2012)
    44. J. K. Kim, M. J. Park, S. J. Kim, D. H. Wang, S. P. Cho, S. Bae, J. H. Park, B. H. Hong, “Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells,” ACS Nano 7, 7207-7212 (2013)
    45. W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510-519 (1961)
    46. T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, A. Javey, “Field-effect transistors built from all two-dimensional material components,” ACS Nano 8, 6259-6264 (2014)
    47. M. H. Chiu, M. Y. Li, W. Zhang, W. T. Hsu, W. H. Chang, M. Terrones, H. Terrones, L. J. Li, “Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking,” ACS Nano 8, 9649-9656 (2014)
    48. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14, 4785-4791 (2014)
    49. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. Duan, “Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes,” Nano Lett. 14, 5590-5597 (2014)
    50. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024-1030 (2014)
    51. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, X. Xu, “Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors,” Nat. Mater. 13, 1096-1101 (2014)
    52. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W. H. Chang, K. Suenaga, L. J. Li, “Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524-528 (2015)
    53. Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y. T. Hsu, L. J. Li, W. Guo, S. P. Lau, “Exceptional tenability of band energy in a compressively strained trilayer MoS2 sheet,” ACS Nano 7, 7126-7131 (2013)
    54. W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,” Nanoscale 5, 9677-9683 (2013)
    55. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385-1390 (2012)
    56. K. F. Mak, C. Lee, J. Hone, H. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010)
    57. J. W. Rabalais, “Principles of ultraviolet photoelectron spectroscopy,” Wiley: New York (1977)
    58. O. Lopez-Sanchez, E. A. Llado, V. Koman, A. F. i Morral, A. Radenovic, A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8, 3042-3048 (2014)
    59. C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, C. K. Shih, “Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states and edge band bending,” Nano Lett. 14, 2443-2447 (2014)
    60. H. Haug, S. W. Koch, “Quantum theory of the optical and electronic properties of semiconductors,” 5th ed.; World Scientific (2009)
    61. C. Oshima, A. Nagashima, “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces,” J. Phys.: Condens. Matter 9, 1-20 (1997)
    62. S. M. Sze, K. K. Ng, “Physics of semiconductor devices,” Wiley-interscience (2006)
    63. Y. Zhang, F. Zn, S. T. Lee, L. Liao, N. Zhao, B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4, 1300923 (2014)
    64. J. Suh, T. E. Park, D. Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J. Wu, “Doping against the native propensity of MoS2: degenerate hole doping by cation substitution,” Nano Lett. 14, 6976-6982 (2014)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE