簡易檢索 / 詳目顯示

研究生: 谷柏叡
Ku, Po-Jui
論文名稱: 壓電式觸覺感測器陣列及CMOS感測電路之開發
Development of Piezoelectric Tactile Sensor Arrays and CMOS Sensing Circuits
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 鄭裕庭
Cheng, Yu-Ting
方維倫
Fang, Wei-Leun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 168
中文關鍵詞: 壓電效應鋯鈦酸鉛聚偏二氟乙烯觸覺感測陣列感測器類比電路
外文關鍵詞: Piezoelectric, PZT, PVDF, Tactile Sensing, Sensor Array, Analog Circuit
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三種壓電材料結合軟性雙層板製程,開發出柔性的壓電陣列感測器,並搭配包含兩種共用感測電路的CMOS晶片,實現了壓電陣列感測系統。
    研究選用PZT與P(VDF-TrFE)作為壓電材料,與軟性雙層板製程和網板印刷製程做結合,同時應用TSMC 0.35 μm CMOS製程設計出連續式、開關電容式兩種共用感測電路,提升系統整合度。陣列大小範圍為長寬3 cm,壓電單元大小為長寬2.76 mm到5 mm,陣列數目為四行四列共十六個壓電單元,區分為每八個一組,並以兩顆CMOS晶片做訊號的增益選擇、雜訊濾波、訊號讀取等,最後以MATLAB做訊號處理。經測試,系統能即時偵測人體脈搏、變頻應力和陣列圖形,並有效濾除低頻雜訊,展現出在陣列觸覺感測的可能性。
    壓電材料的選用上,第一間公司為宏惠光電股份有限公司訂購Thorlabs公司之PA4FEW(PZT壓電模塊);第二間公司為綠匯有限公司訂購Poly-K公司之Copolymer 80/20(P(VDF-TrFE)壓電薄膜);第三間公司為寰辰科技股份有限公司(ELECERAM)之Navy Type IV(PZT壓電薄片)。
    在脈搏量測方面,三種壓電材料皆量測出了脈搏訊號,並能根據脈搏的QRS波組推算出脈搏的跳動次數介在68次/每分鐘到85次/每分鐘。PA4FEW在晶片放大後的電壓值介在250 mV到275 mV,Copolymer 80/20在晶片放大後的電壓值介在25 mV到28 mV,Navy Type IV在晶片放大後的電壓值介在50 mV到56 mV。
    在變頻量測方面,我們對三種壓電材料構成的壓電陣列感測系統做頻譜分析,並發現PA4FEW除了符合震動源頻率出現高峰以外,偶數與奇數倍頻上也出現共振頻,而Copolymer 80/20與Navy Type IV只在奇數倍頻上出現共振頻。頻寬方面,PA4FEW的線性區域約位在2000 Hz以內,Copolymer 80/20的線性區域約位在800 Hz以內,Navy Type IV的線性區域約位在30 kHz以內。
    在陣列可行性方面,我們發現PA4FEW所構成的壓電單元之間,並不會對共用感測電路產稱訊號耦合,因此我們對其另外進行了陣列圖形感測,並成功感測出英文字母NTHU所形成的二維分布圖。
    放大後感測度方面,PA4FEW有最佳的放大後感測度為8.04 μV/Pa、Navy Type IV有居中的放大後感測度為1.97 μV/Pa、Copolymer 80/20有最差的放大後感測度為1.34 μV/Pa。Allan偏差方面,Copolymer 80/20有最佳的Allan偏差為第10 sec的23 μV、Navy Type IV有居中的Allan偏差為第30 sec的45 μV、PA4FEW有最差的Allan偏差第60 sec的80 μV。解析度方面,PA4FEW有最佳的解析度為9.95 Pa、Copolymer 80/20有居中的解析度為17.17 Pa、Navy Type IV有最差的解析度為22.89 Pa。


    This study combines three piezoelectric materials with a flexible double-layer board process to develop a flexible piezoelectric array sensor. The sensor system integrates with a CMOS chip featuring two types of shared sensing circuits to achieve a piezoelectric array sensing system.
    PZT and P(VDF-TrFE) were chosen as the piezoelectric materials, combined with a flexible double-layer board process and screen-printing technology. Using the TSMC 0.35 μm CMOS process, two types of shared sensing circuits, Continuous and SC, were designed to enhance system integration. The array measures 3 cm in length and width, with individual piezoelectric units sized between 2.76 mm and 5 mm. The array consists of 16 piezoelectric units arranged in a 4x4 matrix, divided into two groups of eight units. Two CMOS chips are used for signal amplification, noise filtering, and signal reading, with MATLAB employed for signal processing. Testing demonstrated that the system can detect human pulse signals, variable-frequency stress, and array patterns in real time, effectively filtering low-frequency noise, and showcasing its potential for tactile sensing applications.
    For piezoelectric material selection, PA4FEW (PZT piezoelectric module) was sourced from Thorlabs through Hung Hui Optoelectronics Co., Ltd.; Copolymer 80/20 (P(VDF-TrFE) piezoelectric film) was procured from Poly-K via Green Energy Co., Ltd.; and Navy Type IV (PZT piezoelectric sheet) was supplied by ELECERAM via Global Well Tech Co., Ltd.
    In Pulse Measurement, all three piezoelectric materials successfully measured pulse signals, with QRS waveforms allowing pulse rates to be calculated between 63 and 85 beats per minute. After chip amplification, PA4FEW exhibited voltage values ranging from 250 mV to 275 mV, Copolymer 80/20 from 25 mV to 28 mV, and Navy Type IV from 50 mV to 56 mV.
    In Variable Frequency Measurement, frequency spectrum analysis of the piezoelectric array sensing system revealed that PA4FEW exhibited resonance frequencies at the source vibration frequency and at both even and odd harmonics. In contrast, Copolymer 80/20 and Navy Type IV only displayed resonance at odd harmonics. In terms of bandwidth, PA4FEW's linear region extended up to approximately 2000 Hz, Copolymer 80/20 up to 800 Hz, and Navy Type IV up to 30 kHz.
    In Array Feasibility Measurement, it was observed that piezoelectric units formed from PA4FEW did not induce signal coupling in the shared sensing circuits. Additional array pattern sensing successfully captured a two-dimensional distribution representing the English letters "NTHU."
    In terms of amplified sensitivity, PA4FEW exhibits the best amplified sensitivity of 8.04 μV/Pa, Navy Type IV has a moderate amplified sensitivity of 1.34 μV/Pa, and Copolymer 80/20 shows the lowest amplified sensitivity at 1.97 μV/Pa. Regarding Allan deviation, Copolymer 80/20 achieves the best Allan deviation of 23 μV at the 10-second mark, Navy Type IV has a moderate Allan deviation of 45 μV at the 30-second mark, and PA4FEW demonstrates the worst Allan deviation of 80 μV at the 60-second mark. As for resolution, PA4FEW offers the best resolution at 9.95 Pa, Copolymer 80/20 has a moderate resolution of 17.17 Pa, and Navy Type IV displays the lowest resolution at 22.89 Pa.

    摘要…………………………………………………………………………………………….I Abstract III 誌謝……………………………………………………………………………………………V 目錄…………………………………………………………………………………………..VI 圖目錄 IX 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機 7 第二章 感測結構設計與模擬 10 2-1 壓電陣列感測系統架構 10 2-2 壓電陣列感測器工作原理 12 2-2-1 應變-電荷型 13 2-2-2 應力-電荷型 14 2-3 壓電材料參數 15 2-3-1 Thorlabs PA4FEW(PZT壓電模塊) 15 2-3-2 Poly-K Copolymer 80/20(P(VDF-TrFE)壓電薄膜) 16 2-3-3 ELECERAM Navy Type IV(PZT壓電薄片) 17 2-4 有限元素法模擬 18 2-4-1 Thorlabs PA4FEW(PZT壓電模塊) 21 2-4-2 Poly-K Copolymer 80/20(P(VDF-TrFE)壓電薄膜) 25 2-4-3 ELECERAM Navy Type IV(PZT壓電薄片) 29 第三章 共用感測電路設計與模擬 33 3-1 共用感測電路架構 33 3-2 共用感測電路 34 3-2-1 連續式共用感測電路 34 3-2-2 開關電容式共用感測電路 37 3-3 放大器 40 3-3-1 連續式放大器 40 3-3-2 開關電容式放大器 44 3-4 增益選擇 48 3-4-1 連續式增益選擇 48 3-4-2 開關電容式增益選擇 50 3-5 低頻雜訊濾除 52 3-5-1 連續式低頻雜訊濾除 52 3-5-2 開關電容式低頻雜訊濾除 53 3-6 取樣保持 54 3-7 寄生電容消除 58 3-8 壓電單元選擇 60 3-9 OPAMP 64 第四章 壓電陣列感測系統實現 84 4-1 CMOS晶片佈局考量 84 4-2 軟性雙層板之設計與製作 90 4-3 網板印刷之設計與製作 96 4-4 硬性雙層板之設計與製作 104 4-5 壓電陣列感測器成品 109 第五章 量測結果與討論 111 5-1 測試電路量測 111 5-1-1 量測儀器介紹 111 5-1-2 共用測試電路 112 5-1-3 測試陣列可行性 119 5-1-4 聲帶振動可能性 123 5-2 Thorlabs PA4FEW(PZT壓電模塊) 126 5-2-1 脈搏量測 127 5-2-2 變頻量測 129 5-2-3 陣列可行性 132 5-2-4 陣列圖形 136 5-3 Poly-K Copolymer 80/20(P(VDF-TrFE)壓電薄膜) 139 5-3-1 脈搏量測 140 5-3-2 變頻量測 143 5-3-3 陣列可行性 146 5-4 ELECERAM Navy Type IV(PZT壓電薄片) 148 5-4-1 脈搏量測 149 5-4-2 變頻量測 152 5-4-3 陣列可行性 155 5-5 雜訊量測與Allan方差量測 158 第六章 結論與未來工作 163 6-1 研究結果 163 6-2 未來工作 164 參考文獻 166

    [1] J. W. Judy, “Microelectromechanical Systems (MEMS): Fabrication, Design and Applications,” Smart materials and Structures, pp. 1115-1134, 2001.
    [2] M. Ghosh, “Polyimides: Fundamentals and Applications,” CRC press, 2018.
    [3] C. L. Dai, “A Capacitive Humidity Sensor Integrated with Micro Heater and Ring Oscillator Circuit Fabricated by CMOS–MEMS Technique,” Sensors and Actuators B: Chemical, pp. 375-380, 2007.
    [4] W. Yuan, J. Che, and M. B. Chan-Park, “A Novel Polyimide Dispersing Matrix for Highly Electrically Conductive Solution-cast Carbon Nanotube-based Composite,” Chemistry of Materials, pp. 4149-4157, 2011.
    [5] M. Aliqué, C. D. Simão, G. Murillo, and A. Moya “Fully‐printed Piezoelectric Devices for Flexible Electronics Applications,” Advanced Materials, pp.1-17, 2021.
    [6] M. Smith and S. Kar-Narayan, “Piezoelectric Polymers: Theory, Challenges and Opportunities,” International Materials Reviews, pp. 65-88, 2022.
    [7] G. Pillai and S. S. Li, “Piezoelectric MEMS Resonators: A Review,” IEEE Sensors J., pp. 12589-12605, 2021.
    [8] I. Mahbub, S. A. Pullano, H. F. Wang, S. K. Islam, G. To, and M. R. Mahfouz, “A Low-Power Wireless Piezoelectric Sensor-Based Respiration Monitoring System Realized in CMOS Process,” IEEE Sensors J., pp. 1858-1864, 2017
    [9] Y. Y. Chiu, W. Y. Lin, H. Y. Wang, S. B. Huang, and M. H. Wu, “Development of A Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-based Sensor Patch for Simultaneous Heartbeat and Respiration Monitoring,” Sensors and Actuators A: Physical, pp. 328-334, 2013.
    [10] I. Zamora, E. Ledesma, A. Uranga, and N. Barniol, “Monolithic Single PMUT-on-CMOS Ultrasound System With +17 dB SNR for Imaging Applications,” IEEE Access, pp. 142785-142794, 2020.
    [11] Y. Tian, P. He, B. Yang, Z. Yi, L. Lu, and J. Liu, “A Flexible Piezoelectric Strain Sensor Array With Laser-Patterned Serpentine Interconnects,” IEEE Sensors J., pp. 8463-8468, 2020.
    [12] W. K. Lin, B. Wang, G. X. Peng, Y. Shan, H. Hu, and Z. B. Yang, “Skin‐inspired Piezoelectric Tactile Sensor Array with Crosstalk‐free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli,” Advanced Science, pp.1-11, 2021.
    [13] I. Zamora, E. Ledesma, A. Uranga, and N. Barnio, “Miniaturized 0.13-μm CMOS Front-end Analog for AlN PMUT Arrays,” Sensors, pp. 2-18, 2020.
    [14] Y. Dai and S. Gao, “A Flexible Multi-Functional Smart Skin for Force, Touch Position, Proximity, and Humidity Sensing for Humanoid Robots,” IEEE Sensors J., pp. 26355-26363, 2021.
    [15] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-oriented Estimation of Thermal Noise in Switched-capacitor Circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 2358-2368, 2005.
    [16] B. Razavi, “Design of Analog CMOS Integrated Circuits,” 清华大学出版社有限公司, 2005.
    [17] J. Bales, “A Low-power, High-speed, Current-feedback OP-AMP with A Novel Class AB High Current Output Stage,” IEEE Journal of Solid-State Circuits, pp. 1470-1474, 1997.
    [18] D. Sundararajan, “The Discrete Fourier Transform: Theory, Algorithms and Applications,” World Scientific, 2001.
    [19] C. T. Tsao and S. C. Lu, “Development of a Flexible Capacitive Tactile-Proximity Sensor Array with CMOS Integration for Enhanced Sensitivity” IEEE Sensors J., 2024.

    QR CODE