簡易檢索 / 詳目顯示

研究生: 劉冠廷
Guan-Ting Liu
論文名稱: 牙科合金鍍覆氮化鈦鋁薄膜之機械性質與腐蝕行為
Mechanical Characteristics and Corrosion Behaviors of the (Ti,Al)N Coating on Dental Alloys
指導教授: 杜正恭
J. G. Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 50
中文關鍵詞: 牙科合金氮化鈦鋁機械性質腐蝕行為生物相容性
外文關鍵詞: dental alloy, titanium aluminum nitride, mechanical properties, corrosion behavior, biocompatibility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面改質工程是將材料表面加上異質材料的一種製程。具咬合作用的人工牙齒可藉由此改善使用的穩定性及延長使用壽命。本研究採用射頻磁控濺鍍方法在傳統牙科合金試片表面披覆生成三元氮化(鈦,鋁)薄膜。經三元氮化(鈦,鋁)薄膜披覆具有極高之硬度,可達35 GPa。其亦具有良好的抗磨耗性質,可有效降低其磨擦應力,磨擦係數值因三元氮化(鈦,鋁)薄膜披覆下降約0.5。考量口腔環境中使用下,利用0.9 wt. % 氯化鈉溶液進行抗蝕性質的分析。經Tafel公式計算,腐蝕電流密度值為368 (nA/cm2),相較於傳統牙科合金的腐蝕電流密值為835(nA/cm2),在此條件測試中,改質後的材料有明顯抗腐蝕的效果。本研究中並針對生物相容性進行討論,利用動物皮下組織進行培養分析。三元氮化(鈦,鋁)明顯減輕組織間發炎的情形,說明了在生物相容性有顯著的提升。綜合而論,以射頻磁控濺鍍法在傳統牙科合金試片表面披覆生成氮化(鈦,鋁)在機械性質,抗蝕性質與生物相容性方面均有優異的表現。


    Titanium aluminum nitride films were deposited on special dental alloys by reactive RF sputtering to modify the characteristics of nickel-based and chromium-based dental material. The surface hardness of the (Ti1-x,Alx)N films was measured by nanoindentation testing. The hardness of the films was enhanced by the introduction of aluminum as compared to pure TiN films. Nanoindentation tests showed that the surface hardness of the (Ti1-x,Alx)N was as high as 35GPa for a x value of 0.45. The sliding pin-on-disk was employed to investigate the wear resistance of the coatings as compared with dental alloys without any coatings. The friction coefficient of (Ti1-x,Alx)N films against cemented tungsten carbide was lower than that of uncoated dental alloys. To simulate the body environment, corrosion test was carried out in 0.9 wt. % NaCl solution. The morphology and microstructure of the coatings were analyzed by X-ray diffractometry and scanning electron microscopy. A lower corrosion current density was achieved for Ti0.75Al0.25N coated dental alloy as compared with uncoated dental alloys. In addition, the pitting corrosion was substantially reduced by the employment of TiAlN coating. The biocompatibility of three specimens was tested using a subcutaneous implantation test. Data were analyzed using the t-test with a significance level of p<0.05. Specimens coated with (Ti,Al)N films exhibited significantly improved corrosion resistance (p<0.05). The results from biocompatibility testing, based on tissue reactions at two and 12 weeks, revealed substantially enhanced biocompatibility for (Ti,Al)N coated samples when compared to uncoated samples. This demonstrates that the (Ti,Al)N film can significantly improve the electrochemical and biocompatibility properties of the base dental alloy.

    Table List II Figure Caption III Abstract V Chapter I Introduction 1 Chapter II Experimental Procedure 3 2.1 Substrate Preparation 3 2.2 Deposition Techniques 4 2.3 Microstructure Characterization 4 2.3.1 Morphology and Composition Analysis 4 2.3.2 X-ray Diffraction 5 2.3.3 Atomic Force Microscopy 5 2.4 Nano-Hardness and Elastic Modulus Evaluation 6 2.5 Wear Measurement 6 2.6 Corrosion Evaluation 7 2.7 Biocompatibility Investigation 8 Chapter III Results & Discussion 17 3.1 Composition and Phase Identification 17 3.2 Nano-hardness and Young’s Modulus of the Ti1-xAlxN Coatings 19 3.3 Surface Morphology and Roughness Evaluation of Ti1-xAlxN Coatings 20 3.4 Wear Behaviors of uncoated dental alloys and of the Ti1-xAlxN Coatings 21 3.5 Corrosion Behaviors of Ternary Ti1-xAlxN Coatings by RF Magnetron Sputtering 22 3.6 Biocompatibility Investigation 24 Chapter IV Conclusions 45 References

    1. E. Spiechowicz, T. Axell, W. Chmielewski, and P. O. Glantz, Contact Dermatitis, 10 (1984), 206.
    2. S. D. Cook, J. J. Klawitter, T. A. Sander, and A. M. Weinstein, Biomater. Med. Dev. Artif. Organs, 10 (1982), 123.
    3. T. Tonino, M. Givvanna, D. Lullo, and C. Sergio, Dent. Mater., 19 (2003), 732.
    4. J. Fischer, Biomaterials, 23 (2002), 1302.
    5. M. Niinomi, Mat. Sci. Eng., A243 (1998), 231.
    6. B. Grosgogeat, L. Reclaru, M. Lissac, and F. Dalard, Biomaterials, 20 (1999), 933.
    7. G. Schmalz and P. Garphammer, Den. Mater., 18 (2002), 396.
    8. F. Sunderman, Prev. Med., 5 (1976), 279.
    9. J. Moffa, J. Am. Dent. Assoc., 104 (1982), 501.
    10. J. P. Moffa, A. D. Guckes, and M. A. Okawa, J. Prosthet. Dent. 30 (1973), 432.
    11. C. Liden, Sci. Total. Environ. 148 (1994), 283.
    12. R. G. Craig, Restorative Dental Materials. Mosby, St. Louis, MO, 10th edn. (1997), 414.
    13. J. C. Wataha, J. Prosthet. Dent. 83 (2000), 223.
    14. N. J. Grimaudo, Gen. Dent. (2001), 498.
    15. R. H. Doremus, J. Mater. Sei., 27 (1992), 285.
    16. C. T. Hanks, J. C. Wataha, and S. Zhilin, Dent. Mater., 12 (1996), 186.
    17. K. H. Chung, J.G. Duh, D. Shin, D. R. Cagna, and R. J. Cronin, J. Biomed. Mater. Res., 63 (2002), 516.
    18. P. C. Jindal, A. T. Santhanam, U. Schleinlofer, and A. F. Shuster, Int. J. Refract. Metals Hard Mater., 17 (1999), 163.
    19. C. T. Huang and J. G. Duh, Surf. Coat. Tech., 71 (1995), 259.
    20. S. D Kim, I. S. Hwang, J. K. Rhee, T.H. Cha, and H.D. Kim, Electrochem. solid st., 4 (2001), G7.
    21. M. Hock, E. Schaffer, W. Doll, and G. Kleer, Surf. Coat. Tech., 163 (2003), 689.
    22. C. T. Huang and J. G. Duh, J. Mater. Sci. Lett., 16 (1997), 59.
    23. J. D. Bressan, R. Hesse, and E. M. Silva Jr., Wear, 250 (2001), 561.
    24. S. G. Harris, E. D. Doyle, A. C. Vlasveld, J. Audy, and D. Quick, Wear, 254 (2003), 723.
    25. S. H. Ahn, J. H. Yoo, Y. S. Choi, J.G. Kim, and J.G. Han, Surf. Coat. Tech., 162 (2003), 212.
    26. D. Mcintyre, J. E. Greene, G. Hakansson, J. E. Sundgren, and W.D. Munz, J. Appl. Phys., 67 (1990), 1542.
    27. J. H. Woo, J. K. Lee, S. R. Lee, and D. B. Lee, Oxid. Met., 53 (2000), 529.
    28. S. Seal, A. Kale, K. B Sundaram, and D. Jimenez, J. Vac. Sci. Tech. A18 (2000), 1671.
    29. C. T. Huang and J. G. Duh, Surf. Coat. Tech., 81 (1996), 164.
    30. K. Nakamoto, K. Shiotani, M. Makimata, and M. Saito, ISIJ International 33 (1993), 965.
    31. B. Coll, P. Sathrum, and R. Fontana, Surf. Coat. Tech., 52 (1992), 57.
    32. M. Zlatanovic and P. Stosic, Vacuum, 39 (1989), 557.
    33. P. Hones, C. Zakri, P. E. Shmid, F. Levy, and O. R. Shojael, App. Phsy. Lett., 76 (2000), 3194.
    34. J. I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press, New York, 1992, 2nd Edition.
    35. S. J. B Reed, “Electron Microprobe Analysis”, Cambridge University Press, New York, 1993, 2nd Edition.
    36. C. T. Huang, Thesis, National Tsing Hua University, 1995.
    37. J.J. Jeong, S. K. Huang, and C. M. Lee, surf. Coat. Tech., 151-152 (2002), 82.
    38. B. D. Cullity and S. R. Stock, "Elements of X-ray Diffraction”, Prentice Hall, USA, 2001, 3rd Edition.
    39. Nanoscope Command Reference Manual, Digital Instruments, U.S.A., 1995.
    40. C. B. Prater, P. G. Maivald, K. J. Kjoller, and M. G. Heaton, “Tapping Mode Imaging Applications and technology”, Digital Instrument, U.S.A., 1995.
    41. R. Saha and W. D. Nix, Acta Materialia, 50 (2002), 23.
    42.M. C. Oliver and G. M. Pharr, ”An introduction Techique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., 7(1992), 1564.
    43. W. C. Oliver R. Hutchings, and B. R. Lawn, Am. Soci. Test. Mater., 1986, 90.
    44. H. M Pollock, D. Maugis, and J. B. Pethica, Am. Soci. Test. Mater., 1986, 47.
    45. W.W. Gerberich, S. K. Venkataramanan, H. Huang, S. E. Harrey, and D. L. Kohlstedt, Acta Metall. Mater., 43 (1995), 1569.
    46. M. S. Bobji and S. K. Biswas, J. Mater. Res., 14 (1999), 2259.
    47. J. Mencik and M. V. Swain, J. Mater. Res., 10 (1995), 1491.
    48. F. G. Yost, Metall. Trans., 14A (1983), 947.
    49. D. Starosvetsky and I. Gotman, Biomaterials 22 (2001), 1853.
    50. M. L. Cohen, Phys. Rev., B32 (1985), 7988.
    51. Y. Makino, J. Alloys and Comp., 242 (1996), 122.
    52. M. Hans and E. Bergmann, Surf. Coat. Tech., 62 (1993), 626.
    53. H. Dong, Y. Sun, and T. Bell, Surf. Coat. Tech., 90 (1997), 91.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE