簡易檢索 / 詳目顯示

研究生: 羅珮瑄
Lo, Pei-Hsuan
論文名稱: 奈米多孔陽極氧化鋁膜於微機電顯示元件開發之研究
Design and Implementation of MEMS Display Devices Using Nanoporous Anodic Aluminum Oxide Layer
指導教授: 方維倫
Fang, Weileun
口試委員: 鄭裕庭
林弘毅
羅丞曜
葉文冠
鍾震桂
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 136
中文關鍵詞: 奈米多孔陽極氧化鋁微機電顯示像素干涉
外文關鍵詞: Nanoporous anodic aluminum oxide, MEMS, Color pixel, interference
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米多孔陽極氧化鋁在奈微米領域之中經常被當作模板功能的使用,但其具有可調控之材料特性,包括調變薄膜孔隙率可控制其光學折射率、介電係數與楊氏模數等,具有潛力可以被延伸應用至模板功能以外的微機電元件發展。因此本論文利用微機電製程技術,製作微小尺寸、批量化且可重複製程,整合奈米多孔陽極氧化鋁於微機電光學元件的應用,透過開發干涉調節光學顯示像素可以有效發揮奈米多孔陽極氧化鋁膜之優越特性。透過兩階段成長陽極氧化法步驟定義奈米多孔陽極氧化鋁於矽基板,且經過多道微機電製程技術,調變奈米多孔結構以完成具有光學、機械與電學特性之微元件。本論文所開發之干涉調節光學元件具有下列特性:(1) 奈米多孔陽極氧化鋁膜之光學折射率可經由製程參數輕易調控,可增加光學設計之靈活度,(2) 利用奈米多孔陽極氧化鋁膜可調孔隙率之特點,可設計紅綠藍三原色像素分屬的折射率,因此不需要定義三種厚度的共振腔長,元件將共享同一層犧牲層,使得製程更容易達成,(3) 藉由低溫自組織奈米孔洞的結構,可以有效降低膜層之間的接觸面積,降低致動時的黏附 (in-use stiction)現象發生,增進元件的可靠度,(4) 介電層電荷累積 (dielectric charging)現象可以有效的被奈米多孔陽極氧化鋁膜抑制,減少元件驅動時的電壓偏移量,(5) 改變奈米多孔陽極氧化鋁膜的孔隙率,可以明顯調控驅動電壓,以及(6) 鋁半反射層沉積在多孔隙氧化鋁膜的上方所形成的奈米顆粒,具有光擴散的功能,可以增加光學顯示元件可視角範圍。藉由本論文所提出干涉調節光學顯示像素元件的開發,可以進一步為奈米多孔陽極氧化鋁找尋新的應用與發展方向。


    Nanoporous anodic aluminum oxide (np-AAO) exists tunable material properties in application of various researches. This dissertation developed batch and reproducible np-AAO technology by micro/nano fabrication processes in order to applied electrical, optical, and mechanical properties of np-AAO into micro devices. This study further presents the use of np-AAO for interferometric color pixel application. The merits of this np-AAO color pixels are as follows, (1) porosity of np-AAO layer can be easily adjusted by fabrication process to modulate the refractive index of proposed device, (2) color-pixels of different porosities (refractive indices) can be implemented and integrated on single np-AAO layer by process for different colors modulation, (3) in-use stiction of the actuation np-AAO membrane can be reduced by the nanoporous textures, (4) dielectric charging can be largely reduced by np-AAO material in this study, thus the offset voltage of the polarities close to zero and hysteresis curves are symmetric, (5) driving (pull-in) voltage can be reduced due to superior dielectric constant of np-AAO, and (6) in addition, the morphology of np-AAO with Al half-reflector could scatter the reflect light to further enhance the view-angle of the color-pixels. The tests demonstrate the performance of presented np-AAO for interferometric color pixels.

    中文摘要 i Abstract i 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧 4 1-3-1 奈米多孔陽極氧化鋁膜 4 1-3-2 干涉調節光學顯式元件 6 1-4 論文目標與架構 8 第二章 奈米多孔陽極氧化鋁膜之製備與特性量測 22 2-1 奈米多孔陽極氧化鋁膜置備 22 2-2 奈米多孔陽極氧化鋁膜特性量測 24 2-2-1 光學特性量測 24 2-2-2 電學特性量測 26 2-2-3 機械特性量測 27 2-3 小節 28 第三章 干涉調節次像素 38 3-1 干涉調節次像素設計概念 38 3-2 製作流程 43 3-3 製程結果 45 3-4 量測與討論 45 3-4-1 光學特性 46 3-4-2 電性測試 47 3-4-3 可靠度測試 48 3-5 小結 50 第四章 紅綠藍全彩像素 70 4-1 紅綠藍全彩像素設計概念 71 4-2 模擬分析 71 4-3 製作流程 73 4-4 製程結果 74 4-5 量測與討論 74 4-5-1 光學特性 74 4-5-2 可靠度測試 77 4-6 小結 78 第五章 結論與未來工作 96 5-1 結論 96 5-2 未來工作 97 附錄A 奈米多孔近接感測器 102 A-1 近接感測器設計概念 104 A-2 製作流程 106 A-3 製程結果 107 A-4 量測與討論 108 A-4-1 感測特性量測 108 A-4-2 感測靈敏度量測 109 A-5 小結 111 參考文獻 124

    [1] K.E. Petersen “Silicon as a mechanical material,” Proceedings of IEEE, vol. 70, No. 5, pp. 420-457, 1982.
    [2] Ming C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of IEEE, vol. 85, no. 11, pp. 1833-1856, 1997.
    [3] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
    [4] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
    [5] R. S. Muller, and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1705-1720, 1998.
    [6] Yole, http://www.yole.fr/reports.aspx
    [7] 財團法人國家實驗研究院科技政策研究與資訊中心
    [8] M. Trezza, C. Cirillo, A. I. Vorobjeva, E. A. Outkina, S. L. Prischepa and C. Attanasio, “Vortex matching effects in Nb thin films due to Ni nanopillars embedded in anodic aluminum oxide substrates,” Nanotechnology, vol. 26, pp 035001, 2013.
    [9] D. Perego, S. Franz, M. Bestetti, L. Cattaneo, S. Brivio, G. Tallarida and S. Spiga, “Engineered fabrication of ordered arrays of Au–NiO–Au nanowires,” Nanotechnology, vol. 24, pp 045302, 2013.
    [10] D.-H. Kim, Y. Kim, B. M. Kim, J. S. Ko, C.-R. Cho and J.-M. Kim “Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology,” J. Micromech. Microeng., vol. 21, pp 045003, 2011.
    [11] K. J. Cha, M.-H. Na, H. W. Kim and D. S. Kim, “Nano Petri dishes: a new polystyrene platform for studying cell-nanoengineered surface interactions,” J. Micromech. Microeng., vol. 21, pp 055002, 2014.
    [12] Z. Wang, T. Sun, L. Wang, Q. Zuo, Y. Zhao, Z. Xu and W. Liu, “Application of multi-mask layers for high aspect ratio soft mold imprint,” J. Micromech. Microeng., vol. 22, pp 125025, 2012.
    [13] C. Hong, L. Chu, W. Lai, A.S. Chiang, and W. Fang, “Implementation of a New Capacitive Touch Sensor Using the Nanoporous Anodic Aluminum Oxide (np-AAO) Structure,” IEEE Sensor J., vol. 11, pp. 3409 – 3416, 2011.
    [14] C. Hong, T.-T. Tang, C.Y. Hung, R.P. Pan, and W. Fang, “Liquid Crystal Alignment in Nanoporous Anodic Aluminum Oxide Layer for LCD Panel Applications,” Nanotechnology, vol. 21, pp. 285201, 2010.
    [15] C. Hong, T.-T. Tang, R.P. Pan, and W. Fang, 2011, “Alignment of Liquid Crystal with Nanoporous Anodic Aluminum Oxide (np-AAO) Layer for LCD Application,” IEEE MEMS’11, Cancun, Mexico.
    [16] D. Dobrev, J. Vetter, N. Angert, and R. Neumann, “Growth of ion single crystal in the etched ion tracks of polymer foils,” Appl. Phys., A 72 , pp. 729, 2001.
    [17] H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays Made by Two-Step Replication of Honeycomb Structure of Anodic Alumina,” Science, vol. 268, pp. 1466-1468, 1995.
    [18] R. L. Smith, S:-F. Chuang, and S. D: Collins, “Porous silicon formation mechanisms,” Sensors and Actuators, A21-A23, pp. 825, 1990.
    [19] F. Keller and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of the Electrochemical Society, vol. 100, pp. 11–419, 1953.
    [20] J. P. Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 317, pp. 511–543, 1970.
    [21] G. E.Thompson and G. C.Wood, “Corrosion: Aqueous Process and passive films,” Treaties on Materials Science and Technology, Academic Press Inc.(London)Ltd., vol.23, pp. 206, 1983.
    [22] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys., vol. 25, pp. 1258–1263, 1992.
    [23] A.P. Li, A. Birner, K. Nielsch, and U. Go¨sele, “Polycrystalline nanopore arrays with hexagonal ordering on aluminum” The Journal of Vacuum Science and Technology A, vol. 17, pp. 1428–1431, 1999.
    [24] A. P. Li, ¨sele, “Hexagonal pore arrays with a 50–420nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, vol. 84, pp. 6023–6026, 1998.
    [25] N-Q. Zhao, X-X. Jiang, C-S. Shi, J-J. Li, Z-G. Zhao and X-W. Du, “Effects of anodizing conditions on anodic alumina structure,” Journal of Materials Science, vol. 42, pp. 3878–3882, 2007.
    [26] Y-L. Wang, N-W. Liu, C-Y. Liu, H-H. Wang, “Focused-Ion-Beam-Based Selective Closing and Opening of Anodic Alumina Nanochannels for the Growth of Nanowire Arrays Comprising Multiple Elements,” Adv. Mater., vol. 20, pp. 2547–2551, 2008.
    [27] K. Aratani, P. J.French, P.M. Sarro, D. Poenar, R.F. Wolffenbuttel “Surface micromachined tuneable interferometer array” Sensors and Actuators A, vol. 43, pp. 17–23, 1994.
    [28] M. Aziz, J. Pfeiffer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A New and Simple Concept of Tunable Two-chip Microcavities for Filter Applications in WDM Systems,” IEEE Photonics Technology Letters, vol. 12, no.11, pp. 1522–1524, 2000.
    [29] M. Blomberg, H. Kattelus and A. Miranto, “Electrically tunable surface micromachined Fabry–Perot interferometer for visible light,” Sensors and Actuators A, vol. 162, pp. 184–188, 2010.
    [30] Anna Rissanen, Uula Kantojärvi, Martti Blomberg, Jarkko Antila, Simo Eränen, “Monolithically integrated microspectrometer-on-chip based on tunable visible light MEMS FPI,” Sensors and Actuators A, vol. 182, pp. 130–135, 2012.
    [31] T. Knieling, M. Panitz and W. Benecke, “Electrostatic actuated optical Fabry-Perot switches in passive matrix displays,” Proc. of SPIE, vol. 5348, pp. 130–135, 2004.
    [32] D. Felnhofer, K. Khazeni, M. Mignard, Y. J. Tung, J. R. Webster, C. Chui, and E. P. Gusev, “Device physics of capacitive MEMS,” Microelectron. Eng., vol. 84, pp. 2158–2164, 2007.
    [33] Dejan Pantelić, Srećko Ćurčić, Svetlana Savić-Šević, Aleksandra Korać, Aleksander Kovačević, Božidar Ćurčić and Bojana Bokić, “High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings” Optics Express, vol. 19, pp. 5817–5826, 2011.
    [34] Qualcomm, https://www.qualcomm.com/
    [35] Y. Taii, A. Higo, H. Fujita, and H. Toshiyoshi, “Transparent color pixels using plastic MEMS technology for electronic papers,” IEICE Electronics Express, vol. 3, pp. 97–101, 2006.
    [36] C. Y. Lo, O. H. Huttunen, J. Hiitola-Keinanen, J. Petaja, H. Fujita, H. Toshiyoshi, “MEMS-controlled paper-like transmissive flexible display,” Journal of Micro-electronic Systems, vol. 19, pp. 410–418, 2010.
    [37] C.-K. Liu, K.-T. Cheng, and A. Y.-G. Fuh., “Designs of High Color Purity RGB Color Filter for Liquid Crystal Displays Applications Using Fabry–Perot Etalons,” J. of Display Technology, vol. 8, pp. 174–178, 2012.
    [38] C. Hennesthal, “Anodization of Aluminum: New Applications for A Common Technology,” Application report nanowizard, JPK Instruments AG, Germany, 2003.
    [39] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, pp. 6023-6026, 1998.
    [40] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp 2770–2772, 1997.
    [41] M. Bartek, J. H. Correia and R. F. Wolffenbuttel, “Silver-based reflective coatings for micromachined optical filters,” J. Micromech. Microeng., vol. 9, pp. 162–165, 1999.
    [42] T. Kumeria1 and D. Losic, “Controlling interferometric properties of nanoporous anodic aluminium oxide,” Nanoscale Res Lett., vol. 7, pp. 88, 2012.
    [43] S.-H. Gong S, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett., vol. 36, pp. 4272–4274, 2011.
    [44] D. Choi, S. Lee, C. Lee, P. Lee, J. Lee, K.-H. Lee, H. Park, W. Hwang, “Dependence of the mechanical properties of nanohoneycomb structures on porosity,” J. Micromech. Microeng., vol. 17, pp. 501–508, 2007.
    [45] H. Zhuo, F. Peng, L. Lin, Y. Qu, and Fachun Lai, “Optical properties of porous anodic aluminum oxide thin films on quartz substrates,” Thin Solid Films, vol. 519, pp. 2308–2312, 2011.
    [46] M. Saito and M. Miyagi, “Anisotropic optical loss and birefringence of anodized alumina film,” J. Opt. Soc. Am., vol. 6, pp. 1895–1900, 1989.
    [47] D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B, vol. 20, pp. 3292–3302, 1979.
    [48] G. D. Sulka, and K. Hnida “Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization,” Nanotechnology, vol. 23, pp. 075303, 2012.
    [49] A.P. Li, F. Mu¨ller, A. Birner, K. Nielsch, U. Go¨sele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, pp. 6023, 1998.
    [50] Y.W. Jung, J.S. Byun, D.H. Woo, and Y.D. Kim, “Ellipsometric analysis of porous anodized aluminum oxide films,” Thin Solid Films, vol. 517, pp. 3726–3730, 2009.
    [51] Blomberg, M., Kattelus, and H., Miranto, A., “Electrically tunable surface micromachined Fabry–Perot interferometer for visible light,” Sensors and Actuators A, vol. 162, pp. 184–188, 2010.
    [52] H. A. Macleod: Thin-film optical filters, 2nd Ed. (MacMillan, New York), 1986.
    [53] Kaajakari, V., Practical MEMS: Analysis and design of microsystems, MEMS sensors, electronics, actuators, RF MEMS, optical MEMS, and microfluidic systems, Small Gear Publishing, 2009.
    [54] D. Choi, S. Lee, C. Lee, P. Lee, J. Lee, K.-H. Lee, H. Park, W. Hwang, “Dependence of the mechanical properties of nanohoneycomb structures on porosity,” J. Micromech. Microeng., vol. 17, pp. 501–508, 2007.
    [55] L. Moreno-Hagelsieb, D. Flandre, and J.-P. Raskin, “Mechanical properties of anodic aluminum oxide for microelectromechanical system applications, J. Vac. Sci. Technol. B, vol. 27, pp. 542, 2009.
    [56] S.-K. Hwang, S.-H. Jeong, H.-Y. Hwang, O.-J. Lee, K.-H. Lee, “Fabrication of Highly Ordered Pore Array in Anodic Aluminum Oxide,” Korean J. Chem. Eng., vol. 19, pp. 467, 2002.
    [57] M. Saito and M. Miyagi, “Anisotropic optical loss and birefringence of anodized alumina film,” J. Opt. Soc. Am., vol. 6, pp. 1895–1900, 1989.
    [58] D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B, vol. 20, pp. 3292–3302, 1979.
    [59] R. W. Herfst, H. G. A. Huizing, P. G. Steeneken, and J. Schrnitz,“Characterization of dielectric charging in RF MEMS capacitive switches,” IEEE Int. Conf. on Microelectronic Test Structures, March, 2006, pp. 133–136.
    [60] R. W. Herfst, P. G. Steeneken and J. Schmitz, “Time and voltage dependence of dielectric charging in RF MEMS capacitive switches,” IEEE 45th Annu. Int. Reliab. Phys. Symp. Phoenix, Arizona, April, 2007, pp 417–421.
    [61] I. D. Wolf, P. Czarnecki, A. Jourdain, R. Modlinski, H. Tilmans, R. Puers, van J. Beek and van W. M. Spengen, “The influence of the package environment on the functioning and reliability of capacitive RF-MEMS switches,” Microw. J., vol. 48, pp. 102, 2005.
    [62] R. Maboudian and R. T. Howe, “Critical Review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B, vol. 15, pp. 1–20, 1997.
    [63] R. Jones, H.M. Pollock, D. Geldart and A. Verlinden, “Inter-particle forces in cohesive powders studied by AFM: effects of relative humidity, particle size and wall adhesion,” Powder Technology, vol. 132, pp. 196–210, 2003.
    [64] S. Larouche, L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical filters,” Appl. Optics, vol. 47, C219–C230, 2008.
    [65] Park, J. Fattaccioli, H. Fujita and B. Kim, “Fabrication of aluminum/alumina patterns using localized anodization of aluminum,” International J. of precision Eng. and Manufac., vol. 13, pp. 765–770, 2012.
    [66] F. I. Chang, R. Yeh, G. Lin, P. B. Chu, E. Hoffman, E. J. Kruglick, K. S. J. Pister, and M. H. Hecht, “Gas-phase silicon micromachining with xenon difluoride,” Proc. SPIE, Austin, TX, July 1995, vol. 2641, pp. 117–128.
    [67] J. E. Schanda, Colorimetry: Understanding the CIE system, Wiley, Hoboken, New Jersey, 2007.
    [68] http://www.glory-sun.com.tw/default.aspx?lan=23
    [69] Colombo, A., Tassone, F., Santolini, F., Contiello, N., Gambirasio, A., Simonutti, R., “Nanoparticle-doped large area PMMA plates with controlled optical diffusion,” J. Mater. Chem. C, vol. 1, pp. 2927, 2013.
    [70] R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures", J. Vac. Sci. Technol. B, vol. 15, pp. 1–20 1997.
    [71] Herrmann, C. F.; Delrio, F. W.; Bright, V. M., George, S. M. “Conformal hydrophobic coatings prepared using atomic layer deposition seed layers and non-chlorinated hydrophobic precursors,” J.Micromech. Microeng., vol. 15, pp. 984, 2005.
    [72] V. Vadillo-Rodriguez, H.J. Busscher, W. Norde, J. de Vries, H.C. van der Mei, J. Bacteriol. “Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength,” Colloids and Surfaces B: Biointerfaces, vol. 41, pp. 33–41, 2005.
    [73] H.-K. Lee, S.-I. Chang, and E. Yoon, “Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes,” IEEE Sensors J., vol. 9, no. 12, pp. 1748–1755, 2009.
    [74] D. J. Bell, T. J. Lu, N. A. Fleck, and M. Spearing, “MEMS actuators and sensors: Observations on their performance and selection for purpose,” J. Micromech. Microeng., vol. 15, no. 7, pp. S153–S164, 2005.
    [75] A. Rogner, J. Eicher, D. Munchmeyer, R.-P. Peters, and J. Mohr, “The LIGA technique-what are the new opportunities,” J. Micromech. Microeng., vol. 2, no. 3, pp. 133–140, 1992.
    [76] D. Um, D. Ryu, and M. Kal, “Multiple intensity differentiation for 3-D surface reconstruction with mono-vision infrared proximity array Sensor,” IEEE Sensors J., vol. 11, no. 12, pp. 3352–3358, 2011.
    [77] S.-D. Min, J.-K. Kim, H.-S. Shin, Y.-H. Yun, C.-K Lee, and M. Lee, “Noncontact respiration rate measurement system using an ultrasonic proximity sensor,” IEEE Sensors J., vol. 10, no. 11, pp. 1732–1739, 2010.
    [78] M. Jagiella, S. Fericean, and A. Dorneich, “Progress and recent realizations of miniaturized inductive proximity sensors for automation,” IEEE Sensosr J., vol. 6, no. 6, pp. 1734–1741, 2006.
    [79] D. J. Sadler, and C. H. Ahn, “On-chip eddy current sensor for proximity sensing and crack detection,” Sens. Actuators A, Phys., vol. 91, pp. 340–345, 2001.
    [80] Th. Velten, D. Stefan, and E. Obermeier, “Micro-coil with movable core for application in an inductive displacement sensor,” J. Micromech. Microeng., vol. 9, no. 2, pp. 119–122, 1999.
    [81] A. Zitouni, L. Beheim, R. Huez, and F. Belloir, “Smart electromagnetic sensor for buried conductive targets identification,” IEEE Sensors J., vol. 6, no. 6 pp.1580–1591, 2006.
    [82] T. Reininger, F. Welker, and M. von Zeppelin, “Sensors in position control applications for industrial automation,” Sens. Actuators, A, vol. 129, no. 1-2, pp. 270–274, 2006.
    [83] Z. Chen, and R. C. Luo, “Design and implementation of capacitive proximity sensor using microelectromechanical systems technology,” IEEE Trans. on Ind. Electro., vol. 45, no. 6, pp. 886–894, 1998.
    [84] R. C. Luo, “Sensor technologies and microsensor issues for mechatronics systems,” IEEE ASME Trans Mechatron, vol. 1, pp. 39–49, 1996
    [85] D.-C. Wang, J.-C. Chou, S.-M. Wang, P.-L. Lu, and L.-P. Liao, “Application of a fringe capacitive sensor to small-distance measurement,” Jpn. J. Appl. Phys., vol. 42, pp. 5816–5820, 2003.
    [86] B. George, H. Zangl, T. Bretterklieber, and G. Brasseur, “A combined inductive-capacitive proximity sensor for seat occupancy detection,” IEEE T. Instrum. Meas., pp.13–17, 2010.
    [87] A. Kisner, M. R. Aguiar, A. F. Vaz, A. Rojas, F.A. Cavarsan, J. A. Diniz, and L. T. Kubota, “Submicrometer-MOS capacitor with ultra-high capacitance biased by Au nanoelectrodes,” Appl. Phys. A, vol. 94, pp. 831–836, 2009.
    [88] C. Liang, K. Terabe, T. Hasegawa, and M. Aono, “Resistance switching of an individual Ag2/Ag nanowire heterostructure,” Nanotechnology, vol. 18, pp. 485202, 2007.
    [89] P.-H. Lo, C. Hong, S.-H. Tseng, J.-H. Yeh, and W. Fang, “Implementation of vertical-integrated dual mode inductive-capacitive proximity sensor,” IEEE MEMS 2012, Paris, France, Feb, 2012, pp. 640–643.
    [90] T. D. Lazzara, K. H. A. Lau, W. Knoll, J.-P. Majoral, A.-M. Caminade, A. Janshoff, and C. Steinem, “Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores,” Beilstein J. Nanotechnol, vol. 3, pp. 475–484, 2012.
    [91] C. Hong, L. Chu, A.-S. Chiang, and W. Fang, “Implementation of a new capacitive touch sensor using the nanoporous anodic aluminum oxide (np-AAO) structure,” IEEE Sensors J., vol. 11, no. 12, pp. 1748–1755, 2011.
    [92] Y. W. Jung, J. S. Byun, D. H. Woo, and Y. D. Kim, “Ellipsometric analysis of porous anodized aluminum oxide films,” Thin Solid Films, vol. 517, no. 13, pp. 3726–3730, 2009.
    [93] J. I. Sohn, Y.-S. Kim, C. Nam, B. K. Cho, and T.-Y. Seonga, “Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes,” Appl. Phys. Lett., vol. 87, pp. 123115–123115-3, 2005.
    [94] K. Xiong, J Robertson. , M.C. Gibson, and S.J Clark, “Defect energy levels in HfO2 high-dielectric-constant gate oxide,” Appl. Phys. Lett., 87, 183505 (2005).
    [95] H.-C. Chang, S.-S. Hung, C.-C. Lai, Y.-H. Chen, I.-N. Chang, J.-C. Lin, and T.-C. Liu, “Nano-AAO-based microsensor for monitoring process carbon monoxide,” Advanced Materials Research, Vol. 468–471, pp. 2136-2140, 2012.
    [96] A. H. D. Graham, C. R. Bowen, J. Robbins, and J. Taylor, “Formation of a porous alumina electrode as a low-cost CMOS neuronal interface,” Sens. Actuators, B, vol. 138, pp. 296–303, 2009.
    [97] F. E. Terman, Radio Engineers’ Handbook. New York: NY:McGraw-Hill, 1943.
    [98] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge Univ. Press, 2004.
    [99] Z. Chen, and R. C. Luo, “Design and implementation of capacitive proximity sensor using microelectromechanical systems technology,” IEEE Trans. on Ind. Electro., vol. 45, no. 6, pp. 886–894, 1998.
    [100] M.C. Hegg, and A.V. Mamishev, “Influence of variable plate separation on fringing electric fields in parallel-plate capacitors,” International Symposium on Electrical Insulation, pp. 384–387, 2004.
    [101] R. C. Luo, “Sensor technologies and microsensor issues for mechatronics systems,” IEEE ASME Trans Mechatron, vol. 1, pp. 39–49, 1996.
    [102] D.-C. Wang, J.-C. Chou, S.-M. Wang, P.-L. Lu, and L.-P. Liao, “Application of a fringe capacitive sensor to small-distance measurement,” Jpn. J. Appl. Phys. vol. 42, pp. 5816–5820, 2003.
    [103] B. George, H. Zangl, T. Bretterklieber, and G. Brasseur, “A combined inductive-capacitive proximity sensor for seat occupancy detection,” IEEE T. Instrum. Meas., pp.13–17, 2010.
    [104] H.-K. Lee, S.-I. Chang, and E. Yoon, “Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes,” IEEE Sensors J., vol. 9, no. 12, pp. 1748–1755, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE