簡易檢索 / 詳目顯示

研究生: 廖麗祺
Liao, Li-Chi
論文名稱: 研發溫度及酸鹼雙重應答的多功能型奈米微胞之及其在轉移性癌症治療之應用
Investigation Temperature- and pH-sensitive Double Controlled Multi-functional Micelle and its Treatment for Metastatic Cancer
指導教授: 薛敬和
Hsiue, Ging-Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 141
中文關鍵詞: 複合型微胞熱衝擊方法雙重控制釋放轉移性癌症治療低臨界微胞溫度臨界微胞濃度
外文關鍵詞: Mixed micelle, Hot shock protocol, Dual controlled release, Metastatic cancer therapy, Lower Critical Solution Temperature, Critical Micelle Concentration
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高分子微胞系統中,複合型奈米微胞(multi-component micelle, mixed micelle)已被廣泛應用在藥物載體系統(Drug Delivery System, DDS)。本研究以兩種不同「雙團聯共聚物」之型態,混合製成藥物載體之奈米微胞,發展並建立一全新之「多功能性複合型奈米微胞」。
    本研究主要以開發新系統、組成材料及製程來製備高分子/高分子複合型奈米微胞為主軸,首先將兩種不同的「雙團聯共聚物」之型態的高分子混合製備微胞,一為具有臨界微胞濃度(Criticak Micelle Concentration, CMC)的DiblockⅠ(mPEG-b-PLA),可穩定奈米微胞結構,並可接上顯影分子(如Cy5.5),作為顯影標定之用;一為具有臨界微胞濃度與溫度/酸鹼應答性的團聯共聚物,再分為具有溫度應達之DiblockⅡ(mPEG-b-P(HPMA-co-Lac))與具有溫度/酸鹼雙重應答性之DiblockⅢ(mPEG-b-P(HPMA-co-Lac-HPMA-co-His)),以熱衝擊的製備方法(hot shock protocol),使其自我組裝(self-assembly)形成具有核殼結構(core-shell)的複合型奈米微胞,並具有粒徑小(50-100nm)及分佈均一(PDI<0.2)之生物相容性(biocompatible)奈米微胞。為了取得最佳的複合型奈米微胞之組成比例,並以動態光散射粒徑分析儀(Dynamic Light Scattering, DLS)測量混合後的微胞粒徑大小與分佈,並觀察在不同的酸鹼度下微胞的變化,最後將複合型奈米微胞溶於含4wt.%BSA的緩衝溶液中,模擬微胞在體內環境的穩定性。
    本研究以熱衝擊的方式製備出包覆疏水性藥物-Doxorubicin的複合型奈米微胞,其藥物包覆率約為10-15%,於體外模擬藥物釋放,當所處環境酸鹼值為pH5.4時,其藥物釋放率可高達80%以上,且處於生理環境時,因為藥物突釋(initial brust)的關係使藥物釋放效率保持在40%左右。此外,將包覆藥物之奈米微胞與初級乳癌細胞(MCF-7)、初級子宮頸癌細胞(HeLa) 、轉移性乳癌細胞(ZR-75-1)與轉移性非小細胞型肺癌細胞(H661)與共同培養24、72小時後,可發現奈米藥物微胞相對於裸藥Dox•HCl對轉移性癌細胞更具有毒殺性,且未包覆藥物之奈米微胞完全不具材料毒性。並經由共軛焦顯微鏡(Confocal Laser Scanning Microscopy, CLSM)可觀察藥物在細胞內分布與釋放之行為,乃經由胞飲作用後進入細胞,使藥物累積於細胞質而後進入細胞核,且同時間下微胞釋放之藥物累積於細胞量高於裸藥Dox•HCl。最後,以靜脈注射的方式送入體內,經由EPR效應累積於腫瘤組織,並藉由Cy5.5-PEG-PLA標定微胞,再以非侵入式活體分子影像系統(In Vivo Imaging System, IVIS)觀察微胞於體內的累積情形,且因為環境的變化(如溫度、酸鹼度等)使得微胞不穩定,而於腫瘤組織內釋放藥物做為治療之用。
    本研究製備的「多功能性複合型奈米微胞」具以下特點:(1) HPMA-co-Lac為感溫性疏水性鏈段,微胞核心提供疏水藥物的reservoir,當環境溫度變化皆會加速lactate水解,造成微胞疏水核心逐漸親水性化,使低臨界微胞溫度(Lower Critical Solution Temperature, LCST)往高溫方向移動,造成微胞在人體因病理組織環境變化,進而促使微胞結構不穩定而逐漸釋出藥物,造成微胞結構的破壞而釋放藥物,使藥物能在腫瘤組織內大量釋放。(2)HPMA-co-Boc-His為酸鹼應答共聚物,當環境中的pH值低於Histidine的pKa時,Histidine質子化(protonation)而帶有正電荷,使靜電排斥力增加、疏水作用力減低,造成微胞澎潤而釋放藥物。(3)當雙性團聯共聚物的濃度高於CMC,其疏水作用力會互相吸引、聚集而形成奈米微胞,使其微胞進入生物體內不會因為在血液中濃度驟降而瓦解。藉由(1)及(2)的特性,可以雙重控制奈米微胞釋放藥物的速率,且此兩特性互相影響,當環境中的溫度或酸鹼度產生變化,而加速lactate側鏈的水解與Histidine的酸鹼應答性,造成環境偏向高溫及酸性環境,使微胞內的疏水作用力降低而增加其親水性,導致微胞結構崩解並釋放藥物。綜合以上所述,本研究的多功能性複合型奈米微胞具有溫度及酸鹼應答性、生物相容性、控制藥物釋放的能力等優點,於體內循環時能穩定且累積於腫瘤組織,而後再經由溫度、酸鹼應答與水解的方式控制藥物的釋放,使藥物達到最佳的治療效果,因此在藥物傳輸上極具開發的潛力。

    關鍵字:複合型微胞、mPEG-b-P(HPMA-co-Lac-HPMA-co-His)、熱衝擊方法、雙重控制釋放、酸鹼應答、溫度應答、臨界微胞濃度、低臨界微胞溫度


    In the system of polymeric micelle, it has been widely applied to the drug delivery system (DDS). This research aims to develop and construct a multifunctionally mixed micelle which comes from mixing two different diblock copolymers, and can be used as drug carriers.
    The main points of this research are developing new system, materials and programs to construct polymer with polymer-mixed and nano-sized micelle. First, combine methoxy poly(ethylene glycol)-block-poly(D,L-lactide)(mPEG-b-PLA, DiblockⅠ) with methoxy poly(ethylene glycol)-block-poly(N-(2-hydroxypropyl) methacrylamide-co-lactate)(mPEG-b-P(HPMA-co-Lac), DiblockⅡ) or methoxy poly (ethylene glycol)-block-poly (N-(2-hydroxypropyl) methacrylamide-co-lactate- N-(2-hydroxypropyl) methacrylamide-co-L-Histidine)(mPEG-b-P(HPMA-co-Lac-HPMA-co-His), DiblockⅢ) to prepare the mixed micelle.
    DiblockⅠhas critical micelle concentration (CMC) property. DiblockⅡ and DiblockⅢ have critical micelle temperature (CMT), critical micelle concentration (CMC), and thermal sensitive properties. In addition, DiblockⅢ also has pH sensitivity property due to L-Histidine. DiblockⅠ respectively mixed with DiblockⅡ and DiblockⅢ to prepare core-shell structure and nano-size mixed micelle via hotshock protocol. Such micelle has well biocompatibility, biodegradability, uniform size about 50-100nm, and narrow polydispersity (PDI) below 0.2 at 37℃ buffer solution. DiblockⅠ stabilize and compact the structure against collapsing in blood because of micelle concentration shrinking. The temperature- and pH-sensitivity properties help micelle collapsing and dug releasing by the different temperature and pH in different tissues. The side chain groups of lactate can hydrolysis at physiological condition, contributing to the core of micelle hydrophilization, and upper the lower critical solution temperature (LCST). The controlled instability of micelle improves slowly in vivo degradation. Owing to these advantages, the mixed micelle has a candidate as drug carriers for cancer therapy.
    The traits of multifunctional mixed micelle are as follow. First, HPMA-co-Lac is the hydrophobic segment with temperature-sensitivity, providing a reservoir for hydrophobic drugs. When the temperature of the surroundings changed, the lower critical solution temperature move to high temperature due to the hydrolysis of lactate boosting, the behavior impel to micelle collapsing and drug releasing. Secondly, HPMA-co-Boc-His is pH-sensitive copolymer. When pH of the surroundings below pKa of Histidine, Histidine was protonated and positive charge, leading to the electronic repulsion and hydrophobic interaction of micelle decreased, and dug released. Finally, when the concentrations of copolymers are higher than CMC, copolymers draw others and aggregated, then form nano-micelle. By the above of advantages, we can double control nano-micelle to release drug. When the temperature and pH of the surroundings changed, the side chain group hydrolysis and contribute to the core of micelle changed from hydrophobic to hydrophilic, after all, the structure of the micelle collapsed and released drug.
    The temperature- and pH- sensitivity properties of the mixed micelle can be measured by UV-Vis spectrometer at 542nm and Zetasizer. The lower critical solution temperature occurred at 3-30℃ and gradually increased reducing environment pH. Furthermore, the use of pyrene as probe for fluorescence spectroscopic measurement could observe that the I337/I335 decreased with raising surrounding temperature, indicating that probe diffused from aqueous phase to the core of mixed micelle.
    The characteristics and morphologies of mixed micelle were analyzed from 1H-NMR, DLS, zeta potential, fluorescence spectrometer, UV-Vis spectrometer, GPC, and TEM. Additionally, Doxorubicin (Dox) was incorporate into mixed micelle for cancer therapy. In neutral surroundings, the release of Dox from mixed micelle was less. On the contrast, a significant release of Dox was observed in acidic surroundings about pH<6. The amount of drug released from mixed micelle was isolated from mixed micelle buffer solution by ultra-filtration and measured by UV-Vis spectrometer at 485nm in a time-course produre.
    The result of confocal laser scanning microscopy (CLSM) observation indicated that the loading drug successfully released in the acidic organelles due to the deformation of the micelle structure.
    Above all, the release of drug from mixed micelle could be accurately controlled by pH changes. From these results, the innovative mixed micelle showed high potential for drug carrier in intracellular drug delivery.

    Keyword: Metastatic cancer therapy, block copolymer, mixed micelle, hot shock protocol, dual controlled release, pH sensitivity, temperature sensitivity, CMT, CMC, LCST,

    摘要………………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅳ 目錄……………………………………………………………………VII 圖目錄……………………………………………………………………XI 表目錄…………………………………………………………………XVⅢ 第一章 研究動機與背景…………………………………………………1 第二章 文獻回顧…………………………………………………………4 2-1 癌治療方法…………………………………………………………4 2-1-1 傳統治療………………………………………………………5 2-1-2 奈米藥物治療…………………………………………………6 2-1-3 轉移性癌症之治療……………………………………………9 2-1-4 藥物載體之吞噬機制…………………………………………10 2-2 高分子微胞之設計………………………………………………15 2-2-1 高分子微胞形成原理…………………………………………16 2-2-2 酸鹼應答型高分子……………………………………………20 2-2-3 溫度應答型高分子……………………………………………23 2-2-4 多重應答型高分子……………………………………………26 2-3 複合型微胞………………………………………………………27 2-3-1 高分子/微脂粒複合型奈米微胞……………………………28 2-3-2 高分子/高分子複合型奈米微胞……………………………31 2-3-2-1 團聯共聚物/團聯共聚物複合型奈米微胞………………32 2-3-2-2 團聯共聚物/接枝共聚物複合型奈米微胞………………33 2-4 生物相容性材料性質及其在藥物釋放之應用…………………34 2-4-1 HPMA之性質及其在藥物釋放之應用…………………………35 2-4-2 Histidine之性質及其在藥物釋放之應用…………………36 2-4-3 mPEG之性質及其在藥物釋放之應用…………………………38 2-4-4 Lactide之性質及其在藥物釋放之應用……………………38 第三章 實驗方法………………………………………………………40 3-1 實驗藥品…………………………………………………………40 3-2 儀器與裝置………………………………………………………43 3-3 名詞對照…………………………………………………………44 3-4 雙性團聯共聚合物DiblockⅠ(mPEG-b-PLA)之合成……………45 3-5 溫度/溫度與酸鹼雙重應答團聯共聚物DiblockⅡ(mPEG-b-P (HPMA-co-Lac))/DiblockⅢ(mPEG-b-P(HPMA-co-Lac-HPMA-co- His))之合成………………………………………………………45 3-5-1 酯化反應催化劑DPTS之合成…………………………………45 3-5-2 巨起始劑mPEG2-ABCPA之合成………………………………46 3-5-3 溫度應答巨單體HPMA-co-Lac之合成………………………47 3-5-4 酸鹼應答巨單體HPMA-co-Boc-His之合成…………………48 3-5-5 溫度/溫度與酸鹼雙重應答團聯共聚物DiblockⅡ(mPEG-b-P (HPMA-co-Lac))/DiblockⅢ(mPEG-b-P(HPMA-co-Lac-HPMA- co-His))之合成………………………………………………49 3-6 共聚物之結構鑑定與分析………………………………………51 3-6-1 1H-NMR結構鑑定與數目平均分子量鑑定……………………51 3-6-2 FT-IR鑑定……………………………………………………51 3-6-3 GPC分子量分佈鑑定…………………………………………51 3-6-4 臨界微胞濃度 (Critical Micelle Concentration, CMC)… …………………………………………………………………51 3-7 兩成分複合型奈米微胞之製備…………………………………52 3-8 複合型微胞之鑑定與性質分析…………………………………53 3-8-1 複合型奈米微胞粒徑分析……………………………………53 3-8-2 複合型奈米微胞界面電位(zeta potential)分析…………54 3-8-3 複合型奈米微胞之結構1H-NMR鑑定…………………………54 3-8-4 複合型奈米微胞之相轉移(Phase transition)分析………54 3-8-5 奈米微胞之溫度與酸鹼應答行為……………………………55 3-8-6 複合型奈米微胞之製備最佳化之條件探討…………………55 3-8-7 複合型奈米微胞之藥物包覆性及性質鑑定…………………56 3-8-8 TEM觀察複合型奈米微胞之表面型態與殼核結構分析……57 3-8-9 複合型奈米藥物微胞之體外藥物釋放行為探討……………57 3-8-10 複合型奈米微胞之穩定性…………………………………57 3-8-11 複合型奈米微胞之細胞存活率與細胞毒殺分析…………58 3-8-12 藥物及複合型奈米藥物微胞於細胞內之分布……………61 3-9 複合型奈米微胞於動物體內微胞分佈情形……………………61 3-9-1 複合型奈米藥物微胞於動物體內之分布情形………………61 第四章 結果與討論……………………………………………………63 4-1 雙團聯共聚合物DiblockⅠ(mPEG-b-PLA)之製備與合成………63 4-2 催化劑DPTS之合成與鑑定………………………………………64 4-3 巨起始劑mPEG2-ABCPA之合成與鑑定……………………………66 4-4 溫度應答巨單體HPMA-co-Lac之合成與鑑定……………………67 4-5 酸鹼應答巨單體HPMA-co-Boc-His之合成………………………69 4-6 DiblockⅠ(mPEG-b-PLA)及DiblockⅡ(mPEG-b-P(HPMA-co- Lac))、DiblockⅢ(mPEG-b-P(HPMA-co-Lac-HPMA-co-His))之臨 界微胞濃度(CMC)之鑑定…………………………………………71 4-7 溫度/溫度與酸鹼雙重應答團聯共聚物DiblockⅡ(PEG-b-P (HPMA-co-Lac))/DiblockⅢ(mPEG-b-P(HPMA-co-Lac-HPMA-co- His))之合成與鑑定………………………………………………75 4-8 複合型奈米微胞之製備及最佳化之條件探討…………………80 4-9 奈米微胞之溫度與酸鹼應答行為………………………………88 4-10 複合型奈米微胞之穩定性測試…………………………………97 4-11 複合型奈米微胞包覆抗癌藥物之藥物包覆與性質探討……109 4-12 複合型奈米微胞之藥物釋放行為……………………………114 4-13 複合型奈米微胞之細胞毒殺性測試…………………………117 4-14 複合型奈米藥物微胞於細胞內藥物釋放及分布情形………121 4-15 複合型奈米微胞於動物體內分布情形………………………129 第五章 結論……………………………………………………………131 參考文獻………………………………………………………………135

    1. H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P.
    Scott, A. Bretscher, H. Ploegh, P. Matsudaira, Molecular
    Cell Biology, 2007, W. H. Freeman & Co Ltd
    2. R. A. Weinberg, The biology of cancer, 2006, Garland
    Science
    3. D. W. Kufe, R. E. Pollock, R. R. Weichselbaum, R. C.
    Bast, T. S. Gansler, J. F. Holland, E. Frei, Cancer
    medicine 6,2003, BC Decker
    4. D. M. Harper, E. L. Franco, C. Wheeler, D. G. Ferris, D.
    Jenkins, A. Schuind, T. Zahaf, B. Innis, P. Naud, N. S.
    De Carvalho, C. M. Roteli Martins, J. Teixeira, M. M.
    Blatter, A. P. Korn, W. Quint, G. Dubin, The Lancet,
    2004, 364, p.1757
    5. W. Greiling, P. Ehrlich, Econ Verlag, Düsseldorf, 1954,
    p. 48, Germany
    6. S. F. Robert, Jet. Ho, CNS Drugs, 2002, 16, p.579
    7. 科學發展, 2008, 431, p.16
    8. M. R. Green, The NEW ENGLAND JOURNAL of MEDICINE, 2004,
    350, p.2191
    9. Y. Bae, K. Kataoka, Advanced Drug Delivery Reviews,
    2009, 61, p.768
    10. M. E. Davis, Z. G. Chen, D. M. Shin, Nature
    Reviews:Drug Discovery, 2008, 7, p.771
    11. J. E. Chung, M. Yokoyama, T. Okano, Journal of
    Controlled Release, 2000,65, p.93
    12. R. K. Jain, J. Controlled Release, 2001, 74, p.7
    13. R. Duncan, Pharmaceutical Science & Technology Today,
    1999, 2, p.441
    14. R. Duncan, Natutre. Review: Drug Discovery, 2003, 2,
    p.347
    15. E. R. Gillies, J. M. J. Fréchet, Bioconjugate
    Chemistry, 2005, 16, p.361
    16. H. S. Yoo, E. A. Lee, T. G. Park, Journal of Controlled
    Release, 2002, 82, p.17
    17. S. H. Kim, J. H. Jeong, K. W. Chun, T. G. Park,
    Langmuir, 2005, 21, p.8852
    18. V. Omelyanenko, P. Kopeckova, C. Gentry, J. Kopecek,
    Journal of Controlled Release, 1998, 53, p.25
    19. Y. Lee, H. Koo, G. W. Jin, H. Mo, M. Y. Cho, J. Y.
    Park, J. S. Choi, J. S. Park, Biomacromolecules, 2005,
    6, p.24
    20. C. M. Paleos, D. Tsiourvas, Z. Sideratou, L. Tziveleka,
    Biomacromolecules, 2004, 5, p.524
    21. T. Yamaoka, Y. Tabata, Y. Ikada, Journal of
    Pharmaceutical Sciences, 1994, 83, p.601
    22. G. Atalay, L. Biganzoli, F. Renard, R. Paridaens, T.
    Cufer, R. Coleman, A. H. Calvert, T. Gamucci, A.
    Minisini, P. Therasse, M. J. Piccart , European Journal
    of Cancer, 2003, 39, p.2439
    23. Z. U. Rahman, D. K. Frye, T. L. Smith, Cancer, 1999,
    85, p.104
    24. P. Malmström, L. Holmberg, H. Anderson, J. Mattsson, P.
    E. Jönsson, L. T. Nittby, G. Balldin, L. Lovén, J. H.
    Svensson, C. Ingvar, T. Möller, E. Holmberg, A.
    Wallgren, European Journal of Cancer, 2003,39, p.1690–
    1697
    25. Hi. Sate, Y. Sugiyamab, A. Tsuj, I. Horikoshi, Advanced
    Drug Delivery Reviews, 1996, 19, p.445
    26. A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H.
    Takeuchi, P. Maincent, Y. Kawashima, C. M. Lehr, The
    Journal of pharmacology and experimental therapeutics,
    2001, 299, p.775
    27. J. T. Santini, A. C. Richards, R. Scheidt, M. J. Cima,
    R. Langer, Angewandte Chemie International Edition,
    2000, 39, p.2396
    28. K. Ulbrich, Vladimı´r Sˇ ubr, Advanced Drug Delivery
    Reviews, 2004, 56, p.1023
    29. D. W. Pack, D. Putnam, R. Langer, Biotechnology and
    Bioengineering, 2000, 67, p.217
    30. M. Hrubý, Č. Koňák, K. Ulbrich, Journal of Applied
    Polymer Science, 2005, 95, p.201
    31. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori,
    Journal of Controlled Release, 2000, 65, p.271
    32. V. P. Torchilin, Journal of Controlled Release, 2001,
    73, p.137
    33. E. R. Gillies, J. M. J. Fréchet, Pure and Applied
    Chemistry, 2004, 76, p.1295
    34. H. Wei, S. X. Cheng, X. Z. Zhang, R. X Zhuo, Progress
    in Polymer Science, 2009, 34, p.893
    35. E. Fournier, M. H. Dufresne, D. C. Smith, M. Ranger ,
    J. C. Leroux, Pharmaceutical Research, 2004, 21, p.962
    36. F. M. Winnik, A. R. Davidson, G. K. Hamer, H. Kitano,
    Macromolecules, 1992, 25, p.1876
    37. P. Alexandridis, V. Athanassiou, S. Fukuda, T. A.
    Hatton, Langmuir, 1994, 10, p.2604
    38. P. Alexandridis, J. F. Holzwarth, T. A. Hatton,
    Macromolecules, 1994, 27, p.2414
    39. G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D.
    Maysinger, J. C. Leroux, Journal of Controlled Release,
    2005, 109, p.169
    40. C. Li, S. Wallace, Advanced Drug Delivery Review, 2009,
    60, p.886
    41. S. Katayose, K.i Kataoka, Journal of Pharmaceutical
    Sciences, 1998, 87, p160
    42. L. W. Seymour, K. Kataoka, A. V. Kabanov, P. Felgner,
    Chichester, 1998, 5, p219
    43. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T.
    Matsumoto, S. Katayose, Macromolecules, 1996, 29, p.8556
    44. M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulbrich,
    O. Nazarova, L. W. Seymour, Human Gene Therapy, 1996,
    7, p.2123
    45. W. J. Lin, L. W. Juang, C. C. Lin, Pharmaceutical
    Research, 2003, 20, p.668
    46. T. R. Kyriakides, C. Y. Cheung, N. Murthy, P.
    Bornstein, P. S. Stayton, A. S. Hoffman, Journal of
    Controlled Release, 2002, 78, p.295
    47. D. Kietzmann, A. Béduneau, Y. Pellequer, A. Lamprecht,
    International Journal of Pharmaceutics, 2009, 375, p.61
    48. O. Soga, C. F. Nostrum, W. E. Hennink,
    Biomacromolecules, 2004, 5, p.818
    49. H. Yin, E. S. Lee, D. Kim, K. H. Lee, K. T. Oh, Y. H.
    Bae, Journal of Controlled Release, 2008, 126, p.130
    50. O. E. Philippova, D. Hourdet, R. Audebert, A. R.
    Khokhlov, Macromolecules, 1997, 30, p.8278
    51. O. E. Philippova, D. Hourdet, R. Audebert, A. R.
    Khokhlov, Macromocules, 1999, 32, p.6646
    52. V. T. Pinkrah, M. J. Snowden, J. C. Mitchell, J.
    Seidel, B. Z. Chowdhry, G. R. Fern, Langmuir, 2003, 19,
    p.585
    53. N. Rapoport, Progress in Polymer Science, 2007, 32,
    p.962
    54. E. S. Lee, H. J. Shin, K. Na, Y. H. Bae, Journal of
    Controlled Release, 2003, 90, p.363
    55. E. S. Lee, K. Na, Y. H. Bae, Journal of Controlled
    Release, 2003, 91, p.103
    56. T. J. Martin, K. Procházka, P. Munk, S. E. Webber,
    Macromolecules, 1996, 29, p.6071
    57. A. S. Lee, A. P. G. Bütün, S. P. Armes, Macromolecules,
    1999, 32, p.4302
    58. Y. Tang, S. Y. Liu, S. P. Armes, N. C. Billingham,
    Biomacromolecules, 2003, 4, p.1636
    59. Y. Qiu, K. Park, Advanced Drug Delivery Reviews, 2001,
    53, p.321
    60. B.W. Mao, L. H. Gan, Y. Y. Gan, K. C. Tam, O. K. Tan,
    Polymer, 2005, 46, p.1045
    61. A. Rösler, G. W. M. Vandermeulen, H. A. Klok, Advanced
    Drug Delivery Review, 2001, 53, p.95-108
    62. A. S. Huffman, A. Afrassiabi, L. C. Dong, Journal of
    Controlled Release, 1986, 4, p.213
    63. Y. H. Bae, T. Okano, S. W.n Kim, Journal of Polymer
    Science Part B: Polymer Physics, 1998, 28, p.923
    64. A. Mühlebach, S. G. Gaynor, K. Matyjaszewski,
    Macromolecules, 1998, 31, p.6046
    65. J. N. Kizhakkedathu, K. R. Kumar, D. Goodman, D. E.
    Brooks, Polymer, 2004, 45, p.7471
    66. I. Dimitrov, B. Trzebicka, A. H. E. Müller, A. Dworak,
    C. B. Tsvetanov, Progress in Polymer Science, 2007, 32,
    p.1275
    67. E. J. Kim, S. H. Cho, S. H. Yuk, Biomaterials, 2001,
    22, p.2495
    68. C. L. Lo, S. J. Lin, H. C. Tsai, W. H. Chan, C. H.
    Tsai, C. H. D. Cheng, G. H. Hsiue, Biomaterials, 2009,
    30, p.3961
    69. D. Neradovic, O. Soga, C.F. Nostrum, W.E. Hennink,
    Biomaterials, 2004, 25, p.2409
    70. C. J. F. Rijcken, T. F. J. Veldhuis, A. Ramzi, J. D.
    Meeldijk, C. F. van Nostrum, W. E. Hennink,
    Biomacromolecules, 2005, 6, p.2343
    71. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka,
    T. Okano, Journal of Controlled Release, 1997, 48, p.157
    72. O. Soga, C. F. Nostrum, A. Ramzi, T. Visser, F.
    Soulimani, P.r M. Frederik, P. H. H. Bomans, W. E.
    Hennink, Langmuir, 2004, 20, p.9388
    73. D. Neradovic, C. F. Nostrum, and W. E. Hennink,
    Macromolecules, 2001, 34, p.7589
    74. V. S. Turbetskoy, Advanced Drug Delivery Reviews, 1999,
    37, p.81
    75. J. V. M. Weaver, S. P. Armes, V. Bütün, Chemical
    Communications, 2002, 18, p.2122
    76. Y. Maeda, H. Mochiduki, I. Ikeda, Macromolecular Rapid
    Communications, 2004, 25, p.1330
    77. M. Arotçaréna, B. Heise, S. Ishaya, A. Laschewsky,
    Journal of the American chemical society, 2002, 124,
    p.3787
    78. X. B. Ding, Z. H. Sun, G. X. Wan, Y. Y. Jiang, Reactive
    & Functional Polymers, 1998, 38, p.11
    79. H. Lee, J. Pietrasok, K. Matykaszewski, Macromolecules,
    2006, 39, p.3914
    80. B. Ceh, M. Winterhalter, P. M. Frederik, J. J.
    Vallnerd, D. D. Lasicev, Advanced Drug Delivery
    Reviews, 1997, 24, p.165
    81. P. A. Sivakumar, K. Panduramga Rao, Reactive &
    Functional Polymers, 2001, 49, p.179
    82. A. Kim, M. O. Yun, Y. K. Oh, W. S. Ahn, C. K. Kim,
    International Journal of Pharmaceutics, 1999, 180, p.75
    83. C. Managit, S. Kawakami, M. Nishikawa, F. Yamashita, M.
    Hashida, International Journal of Pharmaceutics, 266,
    2003, p. 77-84
    84. J. Boda, M. Gallardo, M. A. Alsina, J. Estelrich,
    Colloids and Surfaces A: Physicochemical and
    Engineering Aspects, 2001, 182, p.191
    85. H. Takeuchi, H. Kojima, H. Yamamoto, Y. Kawashima,
    Journal of Controlled Release, 2001, 75, p.83
    86. J. Shin, P. Shum, D. H. Thompson, Journal of Controlled
    Release, 2003, 91, p.187
    87. H. Takeuchi, H. Yamamoto, T. Toyoda, H. Toyobuku, T.
    Hino, Y. Kawashima, International Journal of
    Pharmaceutics, 1998, 164, p.103
    88. H. Takeuchi, H. Kojima, T. Toyoda, H. Yamamoto, T.
    Hino, Y. Kawashima, European Journal of Phramaceutics
    and Biopharmaceutics, 1999, 48, p.123
    89. R. Yoshida, K. Uchida, Y. kaneko, K. Sakai, A. Kikuchi,
    Y. Sakurai, T. Okano, Nature, 1995, 374, p.240
    90. J. E. Chung, M. Yokoyama, T. Okano, Journal of
    Controlled Realese, 2000, 65, p.93
    91. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato,
    Y. Sakurai, T. Okano, Colloids and Surfaces B:
    Biointerfaces, 1999, 16, p.195
    92. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T.
    Okano, Journal of Controlled Release, 1998, 53, p.119
    93. V. A. Kabanov, A. A. Yaroslavov, Journal of Controlled
    Release, 2002, 78, p.267
    94. V. S. Trubetskoy, Advanced Drug Delivery Reviews, 1999,
    37, p.81
    95. G. Maltzahn, S. Vauthey, S. Santoso, S. Zhang,
    Langmuir, 2003, 19, p.4332
    96. F. Liu, A. Eisenberg, Journal of Americal Chemical
    Society, 2003, 125, p. 15059
    97. R. Chandra, Renu Rustgi, Progress in Polymer Science,
    1998, 23, p.1273
    98. M. Zignani, D. C. Drummond, O. Meyer, K. Hong, J. C.
    Leroux, Biochimica et Biophysica Acta (BBA)–
    Biomembranes, 2000, 1463, p.383
    99. J. C. Leroux, E. Rouxa, D. L. Garrec, K. Hong , D. C.
    Drummond, Journal of Controlled Release, 2001, 72, p.71
    100. J. R. Gomez, G. Gomez, The British Journal of Clinical
    Practice, 1972, 26, p.33
    101. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M.
    Shakesheff, Chemical Review, 1999, 99, p. 3181
    102. I. C. Kwon, Y. H. Bae, S. W. Kim, Nature, 1991, 354,
    p.291
    103. H. R. Kricheldorf, I. K. Saunders, C. Boettcher,
    Polymer, 1995, 36, p.1253
    104. S. Li, H. Garreau, B. Pauvert, J. McGrath, A. Toniolo,
    M. Vert, Biomacrocolecules, 2002, 3, p.525
    105. L. Liu, S. Li, H. Garreau, M. Vert.,
    Biomacromolecules, 2000, 1, p.350
    106. M. C. Jones, J. C. Leroux., European Journal of
    Pharmaceutics and Biopharmaceutics, 1999, 48, p.101
    107. A. Harada, K. Kataoka, Science, 1999, 283, p.65
    108. E. A. Lysenko, P. S. Chelushkin, T. K. Bronich, A.
    Eisenberg, V. A. Kabanov, A. V. Kabanov, The Journal
    of Physical Chemistry B, 2004, 108, p.12352
    109. P. H. Elworthy, A. T. Florence, C. B. Macfarlane,
    Solubilization by Surface Active Agents, 1968, Chapman
    and hall
    110. Z. Gao, A. Eisenberg, Macromolecules, 1993, 26, p.7353
    111. C. L. Lo, K. M. Lin, C. K. Huang, G. H. Hsiue,
    Advanced Functional Materials, 16, 2006, p.2309
    112. C. K. Huang, C. L. Lo, H. H. Chen, G. H. Hsiue,
    Advanced Functional Materials, 2007, 17, p.2291
    113. P. Bordes, E. Pollet, L. Averous, Progress in Polymer
    Science, 2009, 34, p.125
    114. L. S. Nair, C. T. Laurencin, Progress in Polymer
    Science, 2007, 32, p.762
    115. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y.
    Matsumura, M. Yakoyama, T. Okano, Y. Sakurai, K.
    Kataoka, Journal of Controlled Release, 2001, 74,
    p.295
    116. J. E. Chung, M. Yokoyama, T. Olano, Journal of
    Controlled Release, 2000, 65, P.93
    117. G. Savin, W. Burchard, C. Luca, C. Beldie,
    Macromolecules, 2004, 31, p.6565
    118. C. Y. Wang, L. Huang, Biochemistry , 1984, 23, p.4409
    119. E. S. Lee, H. J. Shin, K. Na, Y. H. Bae, Journal of
    Controlled Release, 2003, 90, p.363
    120. E. S. Lee, K. T. Oh, D. Kim, Y. S. Youn, Y. H. Bae,
    Journal of Controlled Release, 2007, 123, p.19
    121. R. Singh , J. W. Lillard, Experimental and Molecular
    Pathology, 2009, 86, p.215-223
    122. M. S. Martina, V. Nicolas, C. Wilhelm, C. Me’nager,
    G. Barratt, S. Lesieur., Biomaterials, 2007, 28, p.4143
    123. M. T. Peracchia, R. Gref, Y. Minamitake, A. Domb, N.
    Lotan, R. Langer, Journal of Controlled Release, 1997,
    46, p.223
    124. Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada, K.
    Kataoka, Biomacromolecules, 2001, 2, p.1067
    125. S. Y. Kim, I. G. Shin, Y. M. Lee, Journal of
    Controlled Release, 1998, 56, p.197
    126. M. C. Jones, J. C. Leroux, European Journal of
    Pharmaceutics and Biopharmaceutics, 1999, 48, p.101
    127. K. Yasugi, Y. Nagasaki, M. Kato, K. Kataok, Journal of
    Controlled Release, 1999, 62, p.89
    128. O. Soga, C. F. Nostrum, M. Fens, C. J. F. Rijcken, R.
    M. Schiffelers, G. Storm, W. E. Hennink, Journal of
    Controlled Release, 2005, 103, p.341
    129. J. S. Moore, S. I. Stupp, Macromolecules, 1990, 23,
    p.65
    130. J. Xia, X. Zhang, K. Matyjaszewski, Macromolecules,
    1999, 32, p.3531
    131. J. M. Harris, S. Zalipsky, Journal of Controlled
    Released, 2000, 66, p.321
    132. M. D. Whitmore, J. Noolandi, Macromolecules, 1985, 18,
    p.657
    133. L. Leibler, H. Orland, J. C. Wheeler, The Journal of
    chemical physics, 1983, 79, p.3550
    134. E. Fournier, M. H. Dufresne, D. C. Smith, M. Ranger,
    J. C. Leroux, Pharmaceutical Research, 2004, 6, p.962
    135. K. Kalyanasundaram, J. K. Thomas, Journal of American
    Chemical Society, 1997, 99, p.2039

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE