研究生: |
郭登峰 Kuo, Teng-Feng |
---|---|
論文名稱: |
製備雙層奈米殼層金/銀粒子陣列應用於表面增強拉曼散射訊號之生化檢測器 Highly Uniform Surface Enhanced Raman Scattering from Double-Nanoshelled Au/Ag Nanoparticles Arrays with Tunable Interior Nanogap |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
魏培坤
Wei, Pei-Kuen 闕郁倫 Chueh, Yu-Lun |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 拉曼 、奈米粒子 、表面增強拉曼散射 、二氧化鉿 |
外文關鍵詞: | Raman, Nanoparticles, SERS, HfO2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
理想上利用奈米結構產生表面增強拉曼散射 (SERS) 應用以應用於分子檢測等,除須具備高訊號增強能力外,其結構分佈面積亦須夠大、均勻,才可達到實際應用之需求。本研究提出利用一簡單、精確且高產率之製程以製作出具有可精準控制奈米間距之雙奈米殼層金屬粒子陣列,同時具備高拉曼訊號增強效果、製造成本低、適用於水溶液環境及大面積均勻分佈等優點。
透過垂直性蒸鍍金屬層,可於雙奈米殼層金屬粒子底端產生環狀奈米間隙,大幅增加熱點分佈面積。而藉由原子層化學氣相沈積法可精確沈積僅一奈米厚之二氧化鉿層,並可有效控制雙奈米殼層金屬粒子的奈米間隙大小,使其距離縮小至五奈米以內,提供更強的耦合電場強度。透過穿透式電子顯微鏡檢視剖面可發現環狀奈米間隙之寬度隨著二氧化鉿層厚度減少而變窄,而SERS效果亦隨之增加。
本研究建構兩種金屬結構:雙奈米殼層金/金粒子及雙奈米殼層金/銀粒子,主要差別在於第二層金屬層的材料選擇。雙奈米殼層金/金粒子已提供相當高的訊號提升能力,然而當沈積銀層為第二層金屬層時,奈米殼層金/銀粒子則又能將其SERS效果大幅提高,其訊號提升倍率高達130倍,呈現完整的待測分子拉曼光譜。
Abstract
An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should provide a high signal enhancement and can be obtained by easy fabrication process with large hot spot numbers/areas. In this paper, we present a simple, precise, and high-throughput technique for producing double-nanoshelled Au nanoparticles (DNS Au NPs) arrays with well-controlled nanogap of several nanometers by employing ALD HfO2 as the dielectric layer. This DNS Au NPs structure provides respectable SERS by inducing stronger plasmon electric field from the tunable nanogap structure ranging between 10 and 1 nm and large hot-spot areas as a nanoring instead of a spot. The SERS enhancement is inversely proportional to the thickness of HfO2 and a maximum of 20 folds enhancement is found at 1nm nanogap. Moreover, we also employed Ag as second layer instead of Au forming DNS Ag NPs structures, and it significant improved the SERS performance more than an order to the DNS Au NPs.
參考文獻
[1] X. Dou, Y. Yamaguchi, H. Yammamoto, S. Doi, Y. Ozaki, ”Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer”, Vibrational spectroscopy, 13, 83-89, 1996
[2] J. W. McMurdy III, A. J. Berger, “Raman Spectroscopy-Based Creatinine Measurement in Urine Samples from a Multipatient Population”, Applied Spectroscopy 57, 5, 2003
[3] J. R. Baenal, B. Lendl, ” Raman spectroscopy in chemical bioanalysis ”, Current Opinion in Chemical Biology, 8, 534–539, 2004
[4] R. L. McCreery, “Raman Spectroscopy for chemical analysis”, New York: Wiley Interscience, 2000
[5] M. Fleischmann, P. J. Hendra, A. J. McQuillan, "Raman Spectra of Pyridine Adsorbed at a Silver Electrode", Chemical Physics Letters, 26, 163–166, 1974
[6] A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering”, Chemical Society Reviews, 27, 241-250, 1998
[7] Y. Maruyama, M. Ishikawa, M. Futamata, “ATR-SNOM Raman Spectroscopy using Surface Plasmon Polariton”, Analytical Science, 17, 2001
[8] S. Nie, S. R. Emory, ” Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 275, 1997
[9] M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals”, J. Chem. Phys., 69, 1459-1461, 1978
[10] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari and M.S. Feld, “Surface-enhanced Raman scattering and biophysics”, J. Phys.: Condens. Matter, 14, 597-624, 2002
[11] M. Moskovits, ”Surface-enhanced spectroscopy”, Reviews of modern physics, 57, 785-826, 1985
[12] W. Rechberger, A. Hohenau, A. Leitner, J. R, Krenn, B. Lamprecht, F. R. Aussenegg, ”Optical propertices of two interacting gold nanoparticles”, Optics Communications, 220, 137-141, 2003
[13] M. Kuwahara, T. Nakano, C. Mihalcea, T. Shima, J. H. Kim, J. Tominaga, and N. Atoda, “Less than 0.1um linewidth fabrication by visible light using super-resolution near-field structure” Microelectronic Engineering, 57-58, 883-890, 2011
[14] J. J. Chyou, S. J. Chen, C. S. Chu, et al., “Multi-experiment linear data analysis for ATR biosensors, “ Proc. SPIE, 2002
[15] D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection”, Nature Material, 9, 2010
[16] J. Xie, Q. Zhang, J. Y. Lee, Daniel I. C. Wang, “The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications ”, ACS. Nano, 2, 12, 2473-2480, 2008
[17] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, Opt. Commun., 220, 137-141, 2003
[18] P. K. Jain, W. Huang, M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation”, Nano Letters, 7, 7, 2080-2088, 2007
[19] P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges”, J. Phys. Chem. Chem. Phys., 10, 6079–6089, 2008
[20] E. C. Le Ru, P. G. Etchegoin and M. Meyer, J. Chem. Phys.,
125, 204701, 2006
[21] A. Cunningham, S. Mühlig, C. Rockstuhl, T. Bürgi, “Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles”, J. Phys. Chem. C, 115, 8955–8960, 2011
[22] G. Decher, Science, 277, 1232–1237, 1997
[23] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 110, 15700–15707, 2006
[24] H.Y. Hsieh, J. L. Xiao, C. H. Lee, T. W. Huang, C. S. Yang, P. C. Wang, F. G. Tseng, “Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations via Surface-Carboxylation-Shielded Anisotropic Etching for Significant SERS Signal Enhancement”, J. Phys. Chem. C, 115, 16258-16267, 2011
[25] C. Liusman, H. Li, G. Lu, J. Wu, F. Boey, S. Li, H. Zhang, “Surface-Enhanced Raman Scattering of Ag-Au Nanodisk Heterodimers”, J. Phys. Chem. C, 116, 10390-10395, 2012
[26] Y. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. Xu, Y. Jiang, C. J. Brinker, F. Swol, J. A. Shelnutt, “Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures”, J. Am. Chem. Soc., 126, 635–645, 2004
[27] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered magnetic nanostructures: fabrication and properties," Journal of Magnetism and Magnetic Materials, 256, 449-501, 2003
[28] G. M. Whitesides, J. C. Love, "The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across," Scientific American, 285, 38-47, 2001
[29] 鄭瑞庭, 蔡宏營, 林熙翔, 蘇建彰, 陳建洋, "簡介下世代微影技術與奈米轉印微影技術", 機械工業雜誌, 245, 106-116
[30] K. Bessho, Y. Iwasaki, and S. Hashimoto, "Nanoscale magnetic mounds fabricated using a scanning probe microscope," Ieee Transactions on Magnetics, 32, 4443-4447, 1996
[31] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," The Journal of Vacuum Science and Technology B, 14,4129-4133, 1996.
[32] G. Zhang, D. Y. Wang, and H. Mohwald, "Ordered binary arrays of Au nanoparticles derived from colloidal lithography," Nano Letters, 7, 127-132, 2007
[33] M. Alexe, C. Harnagea, and D. Hesse, "Non-conventional micro- and nanopatterning techniques for electroceramics," Journal of Electroceramics, 12, 69-88, 2004
[34] E. Sirotkin, J. D. Apweiler, F. Y. Ogrin, “Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface”, Langmuir, 26, 13, 10677–10683, 2010
[35] Y. Song, W. A. Steen, D. Pena, Y. B. Jiang, C. J. Medforth, Q. Huo, J. L. Pincus, Y. Qiu, D. Y. Sasaki, J. E Miller, et al., “Foamlike Nanostructures Created from Dendritic Platinum Sheets on Liposomes”, Chem. Mater, 18, 2335–2346, 2006
[36] X. Teng, S. Maksimuk, S. Frommer, H. Yang, “Three- Dimensional PtRu Nanostructures” Chem. Mater. , 19, 36–41, 2007