研究生: |
蔡虹驛 Tsai, Hung-Yi |
---|---|
論文名稱: |
利用氧化鋅奈米柱/氧化銀薄膜之核殼異質結構提升光催化活性 Photocatalytic Enhancement in ZnO-Ag2O Core-shell NanorodHeterostructure |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: |
陳世偉
李佳樺 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 氧化銀 、氧化鋅 、光催化 |
外文關鍵詞: | silver oxide, zinc oxide, photocatalytist |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用反應式濺鍍(reactive sputtering),以金屬銀為靶材,將氧氣與氬氣混合通入腔體,成功濺鍍出Ag2O,所獲得的最佳參數為氧分壓25 %、基板溫度170 °C、濺鍍功率50 w及工作壓力5 mTorr。所獲得的氧化銀薄膜為多晶相,在(111)面上有優選結晶方向,能隙值為2.42 eV。
增加濺鍍時氧分壓比例,會使沉降出的薄膜其銀離子價數增加,從Ag(1+)、Ag(2+)到Ag(3+),從XPS來看3d5/2的訊號峰值有逐漸下降的趨勢(367.6 eV→367.2 eV→366.8 eV),XRD的分析也可以輔佐印證。氧分壓超過一極值後,會使”再濺鍍”的效應加強,導致薄膜品質下降;升高基板溫度,可以使薄膜中高價數銀離子之氧化物減少,歸因於這些氧化物在高溫的狀態下的熱穩定性不佳。
將Ag2O濺鍍至ZnO奈米柱體上,形成一核殼的異質結構。從能帶關係、吸收光譜與PL光譜可以印證,此異質結構為p-n型的半導體接合,能帶關係的改變可以減少載子對再複合的機率,同時也加強對太陽光的吸收效果。在光催化全光譜系統中,此異質結構對RhB染料的降解效果與純的ZnO奈米柱相比有較高的反應速率(Ka分別0.75 h-1與0.44 h-1),單純照射可見光的部分此異質結構亦有降解效率(Ka=0.19),可以確認Ag2O對此系統在光催化方面確實有所幫助。
Ag2O thin film, which possessed 2.42eV optical band gap, were deposited on glass and silicon substrates by RF magnetron sputtering using silver target under 25% oxygen flow ratios, 170°C substrate temperature, 50W sputtering power and 5 mTorr working pressure.
The influence of oxygen flow ratio and substrate temperature on the structural, morphological, electrical, and optical properties of deposited Ag2O films was investigated. Increasing oxygen partial pressure during sputtering decreases the crystallinity of Ag2O due to oxidation of large portion of the metal target and re-sputtering effect. X-ray diffraction and X-ray photoelectron spectroscopy indicates that sputtering with higher oxygen partial pressure prefers to deposit silver oxide film with higher oxidation state, and sputtering at higher substrate temperature tend to demonstrate silver oxide film with lower oxidation state.
Reactive-sputtered Ag2O was deposited on ZnO nanowires which were hydrothermally grown on conductive Zn0.99Ga0.01O film/ Si substrate. Absorption in the visible-NIR range of the ZnO-Ag2O core-shell heterostructure is investigated. Photodegradation of organic pollutants in aqueous solution is a promising application for this ZnO-Ag2O core-shell heterostructure, which exhibit a photodegradation rate 1.7 times higher than that recorded for the bare ZNA under sun irradiation.
1. D. Seghier, H. P. Gislason, Journal of Materials Science: Materials in Electronics 2008, 19(8), 687.
2. S. Baruah, J. Dutta, Science and Technology of Advanced Materials 2009, 10 (1), 013001.
3. Q. Ahsanulhaq, A. Umar, Y. B.Hahn, Nanotechnology 2007, 18(11), 115603.
4. J. J. Qiu, X. M. Li, W. Z. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, Y. D. Kim, Nanotechnology 2009, 20 (15), 155603.
5. Q. W. Li, J. M. Bian, J. C. Sun, J. W. Wang, Y. M. Luo, K. T. Sun, D. Q. Yu, Applied Surface Science 2010, 256 (6), 1698.
6. T. Ma, M. Guo, M. Zhang, Y. J. Zhang, X. D. Wang, Nanotechnology 2007, 18 (3), 035605.
7. S. F. Wang, T. Y. Tseng, Y. R. Wang, C. Y. Wang, H. C. Lu, W. L. Shih, International Journal of Applied Ceramic Technology 2008, 5(5), 419.
8. Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Journal of Sol-Gel Science and Technology 2006, 39 (1), 49.
9. Y. Zhou, W. B. Wu, G. D. Hu, H. T. Wu, S. G. Cui, Materials Research Bulletin 2008, 43 (8-9), 2113.
10. J.F. PiersonT, C. Rousselot, Surface & Coatings Technology 2005, 200, 276
11. X.Y. Gao, J.M. Ma, C. Chen, M. K. Zhao, J. H. Gu and J. X. Lu, Journal of the Korean Physical Society 2012, 60(5), 807
12. X. Y. GAO, H. L. FENG, Chin. Phys. Lett. 2011, 27( 2), 026804
13. K. Lalitha, J. K. Reddy, M. V. P. Sharma, V. D. Kumari, M. Subrahmanyam, Int. J. Hydrogen Energy 2010, 35, 3991.
14. L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Science 2001, 291, 103.
15. D. Tudela, J. Chem. Educ. 2008, 85, 863.
16. B. J. Murray, Q. Li, J. T. Newberg, E. J. Menke, J. C. Hemminger and R. M. Penner, Nano Lett. 2005, 5, 2319.
17. X. Wang, H. F. Wu, Q. Kuang, R. B. Huang, Z. X. Xie and L.S. Zheng, Langmuir 2010, 26 (4), 2774.
18. M. F. Al-Kuhaili, J. Phys. D: Appl. Phys. 2007, 40, 2847.
19. J. M. J. Santillan, L. B. Scaffardi, D. C. Schinca, and F. A. Videla, J. Opt. 2010, 12, 045002.
20. S. M. Hou, M. Ouyang, H. F. Chen, W. M. Liu, Z. Q. Xue, Q. D. Wu, H. X. Zhang, H. J. Gao, and S. J. Pang, Thin Solid Films 1998, 315, 322.
21. D. Dellasega, A. Facibeni, F. Di Fonzo, V. Russo, C. Conti, C. Ducati, C. S. Casari, A. Li Bassi, and C. E. Bottani, Appl. Surf. Sci. 2009, 255, 5248.
22. N. Ravi Chandra Raju, K. Jagadeesh Kumar, and A. Subrahmanyam, J. Phys. D: Appl. Phys. 2009, 42, 1354110.
23. L. Armelo, D. Barreea, M. Bertapelle, Y. Bottaro, C. Sada, and E. Tondello, Thin Solid Films 2003, 422, 48.
24. J. Asbalter and A. Subrahmanyam, J. Vac. Sci. Technol. A 2000, 18, 167.
25. Y. Yuan, R. Yuan, Y. Chai, Y. Zhuo, L. Mao, and S. Yuan, J. Electroanal. Chem. 2010, 643, 15.
26. U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Thin Solid Films 2003, 429, 129.
27. X. Y. Gao, H. L. Feng, J. M. Ma, Z. Y. Zhang, J. X. Lu, Y. S. Chen, S. E. Yang, and J. H. Gu, Physica B 2010, 405, 1922.
28. T. Shima and J. Tominaga, J. Vac. Sci. Technol. A 2003, 21, 634.
29. J. F. Pierson, D. Wiederkehr, and A. Billard, Thin Solid Films 2005, 478, 196.
30. S. G. Wu, F. Zhang, and G. Tian, Optik. 2010, 122, 1.
31. Y. Abe, T. Hasegawa, M. Kawamura, and K. Sasaki, Vacuum 2004, 76(1), 1.
32. P. Narayana Reddy, A. Sreedhar, M. Hari Prasad Reddy, S. Uthanna, and J. F. Pierson, Cryst. Res. Technol. 46(9), 961.
33. Y. C. Her, Y. C. LAN, W. C. Hsu and S. Y. Tsai, Japanese Journal of Applied Physics 2004, 43(1), 267.
34. X. Y. Gao, S. Y. Wang, J. Li, Y. X. Zheng, R. J. Zhang, P. Zhou, Y. M. Yang, L. Y. Chen, Thin Solid Films 2004, 455, 438.
35. J. M. Herrmann, Catalysis Today 1999, 53, 115.
36. K. Rajeshwar, Journal of Applied Electrochemistry 1995, 25, 1067.
37. P. V. Kamat, B. Patrick, J. Phys. Chem. 1922, 96, 6829.
38. S. Ikeda, N. Sugiyama, B. Pal, G. Marc, L. Palmisano, Physical Chemistry Chemical Physics 2001, 2.
39. W. Smith, A. Wolcott, R. C. Fitzmorris, J. Z. Zhang and Y. Zhao, J. Mater. Chem. 2011, 21, 10792.
40. Y. Tak, H. Kim, D. Lee and K. Yong, Chem. Commun. 2008, 4585.
41. A. Dawson and P. V. Kamat, J. Phys. Chem. B 2001, 105, 960.
42. E. Szabó-Bárdos, H. Czili, A. Horváth, Journal of Photochemistry and Photobiology A: Chemistry 2003, 154, 195.
43. V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 2004, 126 (15)
44. A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B 2001, 105, 9960.
45. Subramanian, E. E. Wolf, and P. V. Kamat, J. Phys. Chem. B 2003, 107, 7479.
46. P. V. Kamat, Pure Appl. Chem. 2002, 74(9), 1693.
47. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, Chem. Rev. 1995, 95, 69.
48. H.L. Feng, X. Y. Gao, Z. Y. Zhang and J. M. Ma, Journal of the Korean Physical Society 2010, 56(4), 1176.
49. S. Berg, T. Nyberg, Thin Solid Films 2005, 476, 215.
50. Eugenia Mirica, Reactive Sputter Deposition of Piezoelectric Zinc Oxide Thin Films: Processing, Structure and Property Correlation
51. Tiffany C. Kaspar, Tim Droubay, Scott A. Chambers, and Paul S. Bagus, J. Phys. Chem. C 2010, 114, 21562.
52. K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology : Principles, Technology, and Applications
53. T. H. Yang, L. D. Huang, Y. W. Harn, C. C. Lin, J. K. Chang, C. I. Wu, and J. M. Wu, small 2013, 10, 1002
54. L. H. Tjeng, M. B.J. Meinders, J. van Elp, J. Ghijsen, and G. A. Sawatzky, Physical Review B 1990, 41(5)
55. T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Surface and Coatings Technology 2002, 155, 141.
56. H. L. Feng, X. Y. Gao, Z. Y. Zhang and J. M. Ma, Journal of the Korean Physical Society 56(4) 1176
57. S.B. Rivers, G. Bernhardt, M.W. Wright, D.J. Frankel, M.M. Steeves, R.J. Lad, Thin Solid Films 2007, 515, 8684.
58. A.J. Varkey and A.F. Fort, Solar Energy Materials and Solar Cells 1993, 29, 253.
59. D. J. Gargas, H. Gao, H. Wang, P. Yang, Nano Lett. 2011, 11, 3792 .
60. Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, Y. W. Dong, Superlattice Microstruct. 2011, 50, 549.
61. J. P. Lin, National Tsing Hua University 2009