研究生: |
林叡增 Ruei-Zeng Lin |
---|---|
論文名稱: |
利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用 Studies of Heterogeneous Cell-Cell Interactions in Cancer Biology and Tissue Engineering Using Novel Three-dimensional Cell Culture Models |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 173 |
中文關鍵詞: | 細胞球體 、組織工程 、介電泳 、轉移 、活性氧 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與傳統二維平面細胞培養系統相比,新式的三維細胞培養方式能提供更接近真實組織的環境,並引導細胞表現出更真實的細胞-基質或細胞-細胞間交互作用。因此,對於未來生物醫學研究上,選用能適當代表體內環境的三維細胞培養便顯得越來越重要。在各類三維細胞培養系統中,最常被使用的是細胞球體技術。細胞球體是由數百至數千顆懸浮細胞團聚所形成的三維球形細胞團,在細胞球體中,各個細胞被其他細胞與細胞外間質所包圍,並發展出組織特異性的細胞形態與結構。在本論文中,我們首先探討細胞球體形成的分子機制,並鑑定出細胞聚集成球體須經過integrin與cadherin等細胞黏附因子參與的兩階段細胞交互作用。我們也發展出新式的細胞球體培養技術,包括將微米磁珠標定於細胞球體內,並用磁力來控制並排列細胞球體。此外也發展能讓血管內皮細胞與肝細胞ㄧ同形成異質細胞球體的技術,並應用於血管化組織工程上。本文中亦探討利用介電泳力排列細胞的可行性,並成功發展出能排列肝組織與骨組織的介電泳生物晶片。最後,我們亦利用上述的三維細胞培養系統來探討癌症轉移時,癌細胞與血管內皮細胞的交互作用,並發現癌細胞可以透過活化內皮細胞內活性氧分子的大量產生,來促使局部區域血管細胞的細胞凋亡與血管壁破損,進而方便癌細胞從血管中穿出,達成轉移的作用。在三維細胞培養越來越受重視的今天,本文所發展的各種技術將可提供給生物醫學界更多的選擇,並更真實的貼近組織中細胞行為,以取得更可信的研究成果。
In comparison with conventional monolayer cultures, which are unable to generate normal cell-cell interactions found in vivo, cells grown in three-dimensional (3D) environments more closely resemble the situation in real tissues with regard to differentiation patterns and cell-cell and cell-extracellular matrix interactions. In addition, similarities in gene expression, cell behavior, and ultrastructures between 3D cells in culture and in vivo tissues also reveal the potential as models to mimic actual situation in our body. The multicellular spheroidal organoids (spheroids), aggregated from hundreds to thousands of suspended cells, have been exploited widely as the convenient 3D culture models. In this thesis, we first clarified the molecular mechanism involved in the formation of spheroids and identified the roles of integrin and cadherin in the cellular self-assembly process. To extend the applications of spheroid-based 3D culture systems, we also developed novel techniques to manipulate magnetic particle-labeled spheroids to form designed patterns. Furthermore, a new strategy to vascularize engineered thick tissues using heterospheroids was also proposed and demonstrated in an artificial liver system. For certain applications that require high-resolution cellular organizations to study cell-cell interactions, the dielectrophoresis-based cell patterning technique was investigated for efficiency of liver and bone pattern formation with high cell viability and adhesion. Finally, we studied the cell-cell interactions contributing to the critical step of tumor metastaisis − extravasation, by which circulating tumor cells migrate through damaged endothelial barriers. We proposed a model that the contact of tumor and endothelium will induce apoptosis of endothelial cells through ROS-mediated cytotoxicity. The NADPH oxidase was identified as the main source of ROS generation in responding to tumor induction. These data provide a molecular basis to explain how anti-oxidant administration may inhibit tumor metastasis. In summary, we believe that the studies presented in this thesis will greatly contribute to our knowledge on spheroid self-assembly process and efficient generation of the spheroid-based 3D cell culture to meet the increasing demands for 3D cell models in biomedical researches.
[1] Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7:211-24.
[2] Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007.
[3] Abbott A. Cell culture: biology's new dimension. Nature. 2003;424:870-2.
[4] O'Brien LE, Zegers MM, Mostov KE. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol. 2002;3:531-7.
[5] Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol. 2004;85:233-48.
[6] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6.
[7] Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002;78:257-69.
[8] Holtfreter J. A study of the mechanics of gastrulation. J Exp Zool. 1944;95:171-212.
[9] Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952;86:287-301.
[10] Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol. 1997;273:C1109-23.
[11] Mueller-Klieser W. Tumor biology and experimental therapeutics. Crit Rev Oncol Hematol. 2000;36:123-39.
[12] Oudar O. Spheroids: relation between tumour and endothelial cells. Crit Rev Oncol Hematol. 2000;36:99-106.
[13] Kunz-Schughart LA, Kreutz M, Knuechel R. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. International journal of experimental pathology. 1998;79:1-23.
[14] Padron JM, van der Wilt CL, Smid K, Smitskamp-Wilms E, Backus HH, Pizao PE, et al. The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol. 2000;36:141-57.
[15] Desoize B, Jardillier J. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol. 2000;36:193-207.
[16] Dubessy C, Merlin JM, Marchal C, Guillemin F. Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000;36:179-92.
[17] Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103:2480-7.
[18] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425-8.
[19] Korff T, Augustin HG. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol. 1998;143:1341-52.
[20] Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83:173-80.
[21] Landry J, Bernier D, Ouellet C, Goyette R, Marceau N. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol. 1985;101:914-23.
[22] Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002;274:56-67.
[23] Tzanakakis ES, Hess DJ, Sielaff TD, Hu WS. Extracorporeal tissue engineered liver-assist devices. Annu Rev Biomed Eng. 2000;2:607-32.
[24] Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE. Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res. 2001;61:1833-8.
[25] Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. J Clin Invest. 2002;109:857-62.
[26] Khaoustov VI, Darlington GJ, Soriano HE, Krishnan B, Risin D, Pellis NR, et al. Induction of three-dimensional assembly of human liver cells by simulated microgravity. In Vitro Cell Dev Biol Anim. 1999;35:501-9.
[27] Voura EB, Sandig M, Siu CH. Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech. 1998;43:265-75.
[28] Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, et al. Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res. 1998;240:197-205.
[29] Wong BW, Luk JM, Ng IO, Hu MY, Liu KD, Fan ST. Identification of liver-intestine cadherin in hepatocellular carcinoma--a potential disease marker. Biochem Biophys Res Commun. 2003;311:618-24.
[30] Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163:847-57.
[31] Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R. Integrins in invasive growth. J Clin Invest. 2002;109:999-1006.
[32] Varner JA, Cheresh DA. Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv Oncol. 1996;69-87.
[33] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827-39.
[34] Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103:1237-41.
[35] Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000;57:25-40.
[36] Del Duca D, Werbowetski T, Del Maestro RF. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. Journal of neuro-oncology. 2004;67:295-303.
[37] de Ridder L, Cornelissen M, de Ridder D. Autologous spheroid culture: a screening tool for human brain tumour invasion. Critical reviews in oncology/hematology. 2000;36:107-22.
[38] Van Hoorde L, Pocard M, Maryns I, Poupon MF, Mareel M. Induction of invasion in vivo of alpha-catenin-positive HCT-8 human colon-cancer cells. Int J Cancer. 2000;88:751-8.
[39] Graeber SH, Hulser DF. Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res. 1998;243:142-9.
[40] Gimbrone MA, Jr., Cotran RS. Human vascular smooth muscle in culture. Growth and ultrastructure. Lab Invest. 1975;33:16-27.
[41] Goldbrunner RH, Bernstein JJ, Plate KH, Vince GH, Roosen K, Tonn JC. Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. J Neurosci Res. 1999;55:486-95.
[42] Chuang CK, Liao SK. Human bladder carcinoma cells with an unusual pattern of in vitro growth: transition from nonproliferative spheroids to active monolayer growth upon interaction with tumor-derived fibroblasts. Anticancer Res. 2000;20:749-60.
[43] Schuster U, Buttner R, Hofstadter F, Knuchel R. A heterologous in vitro coculture system to study interaction between human bladder cancer cells and fibroblasts. J Urol. 1994;151:1707-11.
[44] Nakamura M, Shinji T, Ujike K, Hirasaki S, Koide N, Tsuji T. Cytoskeletal inhibitors, anti-adhesion molecule antibodies, and lectins inhibit hepatocyte spheroid formation. Acta Med Okayama. 2002;56:43-50.
[45] Seitzer U, Gerdes J. Generation and characterization of multicellular heterospheroids formed by human peripheral blood mononuclear cells. Cells Tissues Organs. 2003;174:110-6.
[46] Furbert-Harris PM, Hunter KA, Vaughn TR, Parish-Gause D, Laniyan I, Harris D, et al. Eosinophils in a tri-cell multicellular tumor spheroid (MTS)/endothelium complex. Cell Mol Biol (Noisy-le-grand). 2003;49:1081-8.
[47] Bates RC, Edwards NS, Yates JD. Spheroids and cell survival. Crit Rev Oncol Hematol. 2000;36:61-74.
[48] Desoize B. Contribution of three-dimensional culture to cancer research. Crit Rev Oncol Hematol. 2000;36:59-60.
[49] Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A. 2004;101:2864-9.
[50] Robinson EE, Foty RA, Corbett SA. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol Biol Cell. 2004;15:973-81.
[51] Shimazui T, Schalken JA, Kawai K, Kawamoto R, van Bockhoven A, Oosterwijk E, et al. Role of complex cadherins in cell-cell adhesion evaluated by spheroid formation in renal cell carcinoma cell lines. Oncol Rep. 2004;11:357-60.
[52] Tomlinson JS, Alpaugh ML, Barsky SH. An intact overexpressed E-cadherin/alpha,beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001;61:5231-41.
[53] Enmon RM, Jr., O'Connor KC, Song H, Lacks DJ, Schwartz DK. Aggregation kinetics of well and poorly differentiated human prostate cancer cells. Biotechnol Bioeng. 2002;80:580-8.
[54] Byers SW, Sommers CL, Hoxter B, Mercurio AM, Tozeren A. Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength. J Cell Sci. 1995;108 ( Pt 5):2053-64.
[55] Neelamegham S, Munn LL, Zygourakis K. A model for the kinetics of homotypic cellular aggregation under static conditions. Biophys J. 1997;72:51-64.
[56] Enmon RM, Jr., O'Connor KC, Lacks DJ, Schwartz DK, Dotson RS. Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells. Biotechnol Bioeng. 2001;72:579-91.
[57] Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol. 1996;134:549-57.
[58] Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4:118-32.
[59] Larue L, Antos C, Butz S, Huber O, Delmas V, Dominis M, et al. A role for cadherins in tissue formation. Development. 1996;122:3185-94.
[60] Oloumi A, McPhee T, Dedhar S. Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta. 2004;1691:1-15.
[61] Casey RC, Burleson KM, Skubitz KM, Pambuccian SE, Oegema TR, Jr., Ruff LE, et al. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 2001;159:2071-80.
[62] Wong CW, Song C, Grimes MM, Fu W, Dewhirst MW, Muschel RJ, et al. Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol. 2002;161:749-53.
[63] Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, et al. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 2003;63:3805-11.
[64] Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555-62.
[65] Otsuka H, Hirano A, Nagasaki Y, Okano T, Horiike Y, Kataoka K. Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface. Chembiochem. 2004;5:850-5.
[66] Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokhzad OC, et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials. 2006;27:1479-86.
[67] Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the Self-Assembly of Complex Cellular Aggregates on Micromolded Nonadhesive Hydrogels. Tissue Eng. 2007.
[68] Torisawa YS, Takagi A, Nashimoto Y, Yasukawa T, Shiku H, Matsue T. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials. 2007;28:559-66.
[69] Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157-61.
[70] Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng. 2005;92:129-36.
[71] Tanase M, Felton EJ, Gray DS, Hultgren A, Chen CS, Reich DH. Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab Chip. 2005;5:598-605.
[72] Ino K, Ito A, Honda H. Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng. 2007;97:1309-17.
[73] Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745-56.
[74] Seglen PO. Preparation of isolated rat liver cells. Methods in cell biology. 1976;13:29-83.
[75] Lin RZ, Chou LF, Chien CC, Chang HY. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell Tissue Res. 2006;324:411-22.
[76] Yoshioka H, Mori Y, Tsukikawa S, Kubota S. Thermoreversible gelation on cooling and on heating of an aqueous gelatin-poly(N-isopropylacrylamide) conjugate. Polym Adv Tech. 1998;9:155-8.
[77] Ozkan M, Pisanic T, Scheel J, Barlow C, Esener S, Bhatia SN. Electro-Optical Platform for the Manipulation of Live Cells. Langmuir. 2003;19:1532-8.
[78] Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003;14:526-32.
[79] Wartenberg M, Donmez F, Ling FC, Acker H, Hescheler J, Sauer H. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. Faseb J. 2001;15:995-1005.
[80] El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006;442:403-11.
[81] Allen JW, Bhatia SN. Engineering liver therapies for the future. Tissue Eng. 2002;8:725-37.
[82] Singhal A, Neuberger J. Acute liver failure: bridging to transplant or recovery--are we there yet? J Hepatol. 2007;46:557-64.
[83] Riccalton-Banks L, Liew C, Bhandari R, Fry J, Shakesheff K. Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng. 2003;9:401-10.
[84] Davis MW, Vacanti JP. Toward development of an implantable tissue engineered liver. Biomaterials. 1996;17:365-72.
[85] Kulig KM, Vacanti JP. Hepatic tissue engineering. Transpl Immunol. 2004;12:303-10.
[86] Rouwkema J, de Boer J, Van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006;12:2685-93.
[87] Braet F, De Zanger R, Sasaoki T, Baekeland M, Janssens P, Smedsrod B, et al. Assessment of a method of isolation, purification, and cultivation of rat liver sinusoidal endothelial cells. Lab Invest. 1994;70:944-52.
[88] Okubo H, Matsushita M, Kamachi H, Kawai T, Takahashi M, Fujimoto T, et al. A novel method for faster formation of rat liver cell spheroids. Artif Organs. 2002;26:497-505.
[89] Vozzi G, Flaim C, Ahluwalia A, Bhatia S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials. 2003;24:2533-40.
[90] Zamora PO, Danielson KG, Hosick HL. Invasion of endothelial cell monolayers on collagen gels by cells from mammary tumor spheroids. Cancer Res. 1980;40:4631-9.
[91] Knuchel R, Feichtinger J, Recktenwald A, Hollweg HG, Franke P, Jakse G, et al. Interactions between bladder tumor cells as tumor spheroids from the cell line J82 and human endothelial cells in vitro. J Urol. 1988;139:640-5.
[92] Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J, 3rd, Langer R, et al. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A. 2006;79:522-32.
[93] Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 2002;55:603-10.
[94] Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23:463-83.
[95] Ochoa ER, Vacanti JP. An overview of the pathology and approaches to tissue engineering. Ann N Y Acad Sci. 2002;979:10-26; discussion 35-8.
[96] Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149-55.
[97] Brey EM, Uriel S, Greisler HP, McIntire LV. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng. 2005;11:567-84.
[98] Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials. 2005;26:1857-75.
[99] Andersson H, van den Berg A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip. 2004;4:98-103.
[100] Kikuchi A, Okano T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release. 2005;101:69-84.
[101] Bhatia SN, Yarmush ML, Toner M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res. 1997;34:189-99.
[102] Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res. 1997;235:305-13.
[103] Zhang S, Yan L, Altman M, Lassle M, Nugent H, Frankel F, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials. 1999;20:1213-20.
[104] Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A. 2000;97:2408-13.
[105] Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, et al. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials. 2004;25:3583-92.
[106] Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, et al. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials. 2005;26:1885-93.
[107] Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 2005;5:111-8.
[108] Ho CT, Lin RZ, Chang WY, Chang HY, Liu CH. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip. 2006;6:724-34.
[109] Chiou PY, Ohta AT, Wu MC. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 2005;436:370-2.
[110] Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769-71.
[111] Grier DG. A revolution in optical manipulation. Nature. 2003;424:810-6.
[112] Lee H, Purdon AM, Westervelta RM. Manipulation of biological cells using a microelectromagnet matrix. Applied Physics Letters. 2004;85.
[113] Yellen BB, Friedman G. Programmable assembly of colloidal particles using magnetic microwell templates. Langmuir. 2004;20:2553-9.
[114] Deng T, Whitesides GM. Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Applied Physics Letters 2001;78.
[115] Gray DS, Tan JL, Voldman J, Chen CS. Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron. 2004;19:1765-74.
[116] Yu Z, Xiang G, Pan L, Huang L, Yu Z, Xing W, et al. Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips. Biomed Microdevices. 2004;6:311-24.
[117] Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN. Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods. 2006;3:369-75.
[118] Matsue T, Matsumoto N, Uchida I. Rapid micropatterning of living cells by repulsive dielectrophoretic force Electrochimica Acta. 1997;42:3251-6.
[119] Suzuki M, Yasukawa T, Mase Y, Oyamatsu D, Shiku H, Matsue T. Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces. Langmuir. 2004;20:11005-11.
[120] Auerswald J, Widmer D, de Rooij NF, Sigrist A, Staubli T, Stockli T, et al. Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay. Electrophoresis. 2005;26:3697-705.
[121] Pohl HA. Dielectrophoresis: Cambridge University Press; 1978.
[122] Jone TB. Electromechanics of particles: Cambridge University Press; 1995.
[123] Choi S, Park JK. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip. 2005;5:1161-7.
[124] Barbulovic-Nad I, Xuan X, Lee JS, Li D. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip. 2006;6:274-9.
[125] Das CM, Becker F, Vernon S, Noshari J, Joyce C, Gascoyne PR. Dielectrophoretic segregation of different human cell types on microscope slides. Anal Chem. 2005;77:2708-19.
[126] Gascoyne PR, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, et al. Dielectrophoresis-based programmable fluidic processors. Lab Chip. 2004;4:299-309.
[127] Rosenthal A, Taff BM, Voldman J. Quantitative modeling of dielectrophoretic traps. Lab Chip. 2006;6:508-15.
[128] Chua KN, Lim WS, Zhang P, Lu H, Wen J, Ramakrishna S, et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials. 2005;26:2537-47.
[129] Docoslis A, Alexandridis P. One-, two-, and three-dimensional organization of colloidal particles using nonuniform alternating current electric fields. Electrophoresis. 2002;23:2174-83.
[130] Hughes MP. Nanoelectromechanics in Engineering and Biology: CRC Press; 2003.
[131] Gascoyne PR, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis. 2002;23:1973-83.
[132] Pohl HA, Kaler K. Continuous dielectrophoretic separation of cell mixtures. Cell Biophys. 1979;1:15-28.
[133] Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR. Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem. 2000;72:832-9.
[134] Voldman J, Gray ML, Toner M, Schmidt MA. A microfabrication-based dynamic array cytometer. Anal Chem. 2002;74:3984-90.
[135] Wang X, Wang X, Becker F, Gascoyne P. A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem. J Phys D: Appl Phys. 1996;29:1649-60.
[136] Alp B, Andrews JS, Mason VP, Thompson IP, Wolowacz R, Markx GH. Building structured biomaterials using AC electrokinetics. IEEE Eng Med Biol Mag. 2003;22:91-7.
[137] Green NG, Morgan H, Milner JJ. Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. J Biochem Biophys Methods. 1997;35:89-102.
[138] Foster KR, Sowers AE. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field. Biophys J. 1995;69:777-84.
[139] Minerick AR, Zhou R, Takhistov P, Chang HC. Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis. 2003;24:3703-17.
[140] Albrecht DR, Sah RL, Bhatia SN. Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J. 2004;87:2131-47.
[141] Wang XB, Huang Y, Wang X, Becker FF, Gascoyne PR. Dielectrophoretic manipulation of cells with spiral electrodes. Biophys J. 1997;72:1887-99.
[142] Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res. 1995;10:178-86.
[143] Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449-58.
[144] Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895-904.
[145] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563-72.
[146] Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995;14:279-301.
[147] McEwen A, Emmanuel C, Medbury H, Leick A, Walker DM, Zoellner H. Induction of contact-dependent endothelial apoptosis by osteosarcoma cells suggests a role for endothelial cell apoptosis in blood-borne metastasis. J Pathol. 2003;201:395-403.
[148] Shaughnessy SG, Lafrenie RM, Buchanan MR, Podor TJ, Orr FW. Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated tumor cell adhesion. Am J Pathol. 1991;138:1535-43.
[149] Vekemans K, Timmers M, Vermijlen D, Zanger RD, Wisse E, Braet F. Cytotoxic reactions of CC531s towards liver sinusoidal endothelial cells: a microscopical study. Comp Hepatol. 2004;3 Suppl 1:S49.
[150] Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res. 1988;48:4065-72.
[151] Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994-8.
[152] Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, et al. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest. 2000;80:837-49.
[153] Vekemans K, Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. World J Gastroenterol. 2005;11:5095-102.
[154] Vekemans K, Timmers M, Vermijlen D, De Zanger R, Wisse E, Braet F. CC531s colon carcinoma cells induce apoptosis in rat hepatic endothelial cells by the Fas/FasL-mediated pathway. Liver Int. 2003;23:283-93.
[155] Shaughnessy SG, Buchanan MR, Turple S, Richardson M, Orr FW. Walker carcinosarcoma cells damage endothelial cells by the generation of reactive oxygen species. Am J Pathol. 1989;134:787-96.
[156] Soares FA, Shaughnessy SG, MacLarkey WR, Orr FW. Quantification and morphologic demonstration of reactive oxygen species produced by Walker 256 tumor cells in vitro and during metastasis in vivo. Lab Invest. 1994;71:480-9.
[157] Paduch R, Walter-Croneck A, Zdzisinska B, Szuster-Ciesielska A, Kandefer-Szerszen M. Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer. Cell Biol Int. 2005;29:497-505.
[158] Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1014-30.
[159] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840-4.
[160] Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201-9.
[161] Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res. 2005;65:16-27.
[162] Kobayashi N, DeLano FA, Schmid-Schonbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005;25:2114-21.
[163] Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1-15.
[164] Ungvari Z, Csiszar A, Huang A, Kaminski PM, Wolin MS, Koller A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation. 2003;108:1253-8.
[165] Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai NT, Caldwell RB. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. Faseb J. 2003;17:752-4.
[166] Pili R, Corda S, Passaniti A, Ziegelstein RC, Heldman AW, Capogrossi MC. Endothelial cell Ca2+ increases upon tumor cell contact and modulates cell-cell adhesion. J Clin Invest. 1993;92:3017-22.
[167] Lewalle JM, Cataldo D, Bajou K, Lambert CA, Foidart JM. Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clin Exp Metastasis. 1998;16:21-9.
[168] Peng HH, Hodgson L, Henderson AJ, Dong C. Involvement of phospholipase C signaling in melanoma cell-induced endothelial junction disassembly. Front Biosci. 2005;10:1597-606.
[169] Cook-Mills JM, Johnson JD, Deem TL, Ochi A, Wang L, Zheng Y. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem J. 2004;378:539-47.
[170] Coyle CH, Martinez LJ, Coleman MC, Spitz DR, Weintraub NL, Kader KN. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic Biol Med. 2006;40:2206-13.
[171] Boulden BM, Widder JD, Allen JC, Smith DA, Al-Baldawi RN, Harrison DG, et al. Early determinants of H(2)O(2)-induced endothelial dysfunction. Free Radic Biol Med. 2006;41:810-7.
[172] Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277-97.
[173] Li B, Zhao WD, Tan ZM, Fang WG, Zhu L, Chen YH. Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett. 2006;580:4252-60.
[174] Albini A, D'Agostini F, Giunciuglio D, Paglieri I, Balansky R, De Flora S. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer. 1995;61:121-9.
[175] Liu J, Kuznetsova LA, Edwards GO, Xu J, Ma M, Purcell WM, et al. Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: Comparison with HepG2 spheroids. J Cell Biochem. 2007.
[176] Menon LG, Kuttan R, Kuttan G. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett. 1995;95:221-5.
[177] Hyoudou K, Nishikawa M, Umeyama Y, Kobayashi Y, Yamashita F, Hashida M. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells. Clin Cancer Res. 2004;10:7685-91.
[178] Jakobisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett. 2003;90:103-22.
[179] Gwak SJ, Choi D, Paik SS, Cho SW, Kim SS, Choi CY, et al. A method for the effective formation of hepatocyte spheroids using a biodegradable polymer nanosphere. J Biomed Mater Res A. 2006;78:268-75.
[180] Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239-47.
[181] Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest. 2000;117:841-54.
[182] Madesh M, Hawkins BJ, Milovanova T, Bhanumathy CD, Joseph SK, Ramachandrarao SP, et al. Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol. 2005;170:1079-90.
[183] van Buul JD, Hordijk PL. Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol. 2004;24:824-33.
[184] Price EA, Coombe DR, Murray JC. beta-1 Integrins mediate tumour cell adhesion to quiescent endothelial cells in vitro. Br J Cancer. 1996;74:1762-6.
[185] Kannagi R. Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J. 1997;14:577-84.
[186] Matheny HE, Deem TL, Cook-Mills JM. Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J Immunol. 2000;164:6550-9.
[187] Wang Q, Chiang ET, Lim M, Lai J, Rogers R, Janmey PA, et al. Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion. Blood. 2001;97:660-8.
[188] Cook-Mills JM. VCAM-1 signals during lymphocyte migration: role of reactive oxygen species. Mol Immunol. 2002;39:499-508.
[189] Anasagasti MJ, Alvarez A, Avivi C, Vidal-Vanaclocha F. Interleukin-1-mediated H2O2 production by hepatic sinusoidal endothelium in response to B16 melanoma cell adhesion. J Cell Physiol. 1996;167:314-23.
[190] Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20:309-16.
[191] Richardson BC, Lalwani ND, Johnson KJ, Marks RM. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol. 1994;24:2640-5.
[192] Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S. Fas expression and function in normal and malignant breast cell lines. Cancer Res. 1996;56:4791-8.
[193] Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation. 2003;71:262-70.
[194] Paget S. The distribution od secondary growths in cancer of the breast. Lancet. 1889;1:571-73.
[195] Qiu H, Orr FW, Jensen D, Wang HH, McIntosh AR, Hasinoff BB, et al. Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol. 2003;162:403-12.
[196] Jessup JM, Battle P, Waller H, Edmiston KH, Stolz DB, Watkins SC, et al. Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells. Cancer Res. 1999;59:1825-9.