簡易檢索 / 詳目顯示

研究生: 洪建儒
Hung, Chien-Ju
論文名稱: 金屬陰極流道板之圓角半徑設計對燃料電池性能之影響研究
The design and fabrication of metallic cathode fillet radii on the performance of PEMFC
指導教授: 林昭安
Lin, Chao-An
口試委員: 王訓忠
許文震
林昭安
曹芳海
蔡麗端
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 燃料電池接觸阻抗金屬雙極板MEA孔隙率
外文關鍵詞: fuel cell, contact resistance, metal bipolar plate, MEA porosit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子交換膜燃料電池 (PEMFC) 組裝為影響性能的關鍵因子之一,壓縮力的增加可降低接觸電阻,但過度壓縮可能會導致額外的接觸電阻和對 MEA 結構的損壞。本研究提出了一種透過不同圓角半徑之陰極金屬流道板來提高電堆性能的模式並進行膜電極組件 (MEA) 中壓縮、變形和接觸面積的影響研究。研究結果顯示,適當的圓角半徑將可降低 54% 接觸電阻並避免壓縮積聚,從而將接觸電阻保持在適當的水平,由於金屬雙極板於電化學反應過程中易導致腐蝕現象,導致介面阻抗的增加,亦是燃料電池性能之關鍵因素之一,選擇不易腐蝕又能夠具備低阻抗之金屬便是重要的考量,故亦對未來適合大量生產之金屬材料不鏽鋼S316L及不同導電性佳之金屬基材進行其阻抗與模擬質子交換膜(PEM)燃料電池之腐蝕電流特性進行實際量測分析,利用實驗量測與觀察金屬基材的外觀及其阻抗性能,找出金屬於耐腐蝕能力與性能之間的關係進行探討以取得未來應用上之參考,以此來提供未來使用不鏽鋼金屬製作具有特徵圓角設計之陰極金屬雙極板之研究參考並期能加速燃料電池產業發展。


    The assembly of PEM fuel cell (PEMFC) dominates a critical factor about the performance. A higher compression force can decrease a contact resistance but excessive compression may cause an abnormal contact resistance and damage the MEA structure. This research proposes a novel metal channel in which the cathode metal bipolar plate with fillet radius is used to improve the performance of the FC stack, including a comprehensive investigation about the effects of compression, deformation and contact area in the membrane electrode assembly (MEA). The research results show that a proper fillet radius can reduce by 54% of the contact resistance and avoid compression stress accumulation to consist with a lower deviation of the contact resistance. In addition, the metal stainless steel S316L, which is suitable for mass production, is used to suppress the corrosion of metal bipolar plate of fuel cell caused by the reaction in fuel cell flow channel. The higher interface impedance with bipolar plate induced by corrosion during chemical reaction can influence the performance of fuel cell significantly. It is critical for fuel-cell performance to choose corrosion-resistant metal with low impedance to attain effective contact with MEA with lower the contact-induced impedance. By using electrochemical-experiment analysis and measurement, the fuel cell performance and its structural features can be learned. The measurement and analysis of the impedance of metallic materials with different conductivities have been studied by the corrosive electric current of PEM fuel cell, by observing the appearance of metallic material and measuring its impedance through the experience. Thereby, the metal corrosion-resistance ability cab be related to the fuel cell performance. The analysis of the cathode metal bipolar plate with fillet radius is used to contribute the performance of fuel cell as a novel stack design.

    目錄 表目錄 圖目錄 第一章 緒論與研究背景介紹 6 1.1研究背景與動機 7 1.2研究目的 7 第二章 文獻探討 11 2.1燃料電池市場發展 11 2.2燃料電池種類介紹 12 2.3質子交換膜燃料電池PEMFC產業發展趨勢 15 2.4燃料電池之膜電極(MEA MEMBRANE ELECTRODE ASSEMBLIES) 15 2.5 PEM燃料電池之結構設計文獻 17 2.6 PEM燃料電池之接觸阻抗之研究文獻 18 2.7 PEM燃料電池孔隙率之研究文獻 21 2.8 PEM燃料電池性能測試之研究文獻 21 2.9 PEM燃料電池之金屬雙極板之研究文獻 23 2.10金屬沖壓加工工藝 28 第三章 研究方法 38 3.1金屬陰極流道板之變形行為 38 3.1.1實驗設計(R=0) 38 3.1.2電池堆組裝 40 3.2.1陰極流道板沖壓程序 44 3.2.2雙極板模組組裝程序 46 3.3燃料電池金屬雙極板的耐腐蝕性研究設計 49 3.3.1金屬基材阻抗驗證 50 3.3.2模擬PEM燃料電池操作之腐蝕電流進行腐蝕狀況與電流        之驗證 51      3.3.3不鏽鋼金屬基板之腐蝕電流比較 51      3.3.4以紅銅金屬基板予以披覆鎳及鉻之腐蝕電流比較分析 51 第四章 結果與討論 53 4.1組件尺寸量測(R=0) 53 4.2圓角半徑和壓縮比的影響結果 58 4.2.1圓角半徑和壓縮比對接觸阻抗的影響 60 4.3金屬雙極板腐蝕特性研究結果 64 第五章 結論與未來展望 67 參考文獻 69

    參考文獻
    [1] D. Liu, L. Peng0 and X. Lai, “Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell,” Journal of Hydrogen Energy 34, 990-997, 2009.
    [2] A. Vlahinos, K. Kelly, J. D’Aleo and J. Stathopoulos, “Effect of material and manufacturing variations on membrane electrode assembly pressure distribution,” Proceedings of First International Conference on Fuel Cell Science, Engineering and Technology, 2003.
    [3] A. Kosuglu, A. M. Karlsson, Santare, M. H. S. Cleghorn, and W. B. Johnson, “Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle,” Journal of Power Sources 161, 987-996, 2006.
    [4] A. Vlahinos, K. Kelly, J. D’Aleo and J. Stathopoulos, “Shape optimization of fuel cell molded-on gaskets for robust sealing,” Proceedings of Fourth International Conference on Fuel Cell Science, Engineering and Technology, 97106, 2006.
    [5] D. Liu, X. Lai, J. Ni, and Z. Lin, “Robust design of assembly parameters on membrane electrode assembly pressure distribution,” Journal of Power Sources 172, 760-767, 2007.
    [6] H. Wang, M. A. Sweikart and J. A. Turner, “Stainless steel as bi-polar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources 155, 243-251, 2003.
    [7] J. A. Greenwood and J. B. P. Williamson, 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A A295, 300–319, 1966.
    [8] A. Majumdar, C.L. Tien, Majumdar, A. and Tien, C. L., “Fractal Network Model for Contact Conductance,” ASME Journal of Heat Transfer 113, 516–525, 1991.
    [9] V. Mishra, F. Yang and R. Pitchumani, “Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cell,” Journal of Fuel Cell Science and Technology 1, 2004.
    [10] P. Zhou, C. W. Wu, and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources 159, 1115-1122, 2006.
    [11] L. Zhang, Y. Liu, H. Song et al., “Estimation of contact resistance in proton exchange membrane fuel cells,” Journal of Power Sources 162, 1165-1171, 2006.
    [12] J. Ihonen, F. Jaouen, G. Lindbergh and G. Sundholm, “A Novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance Measurements,” Electrochim. Acta 46, 2899–2911, 2001.
    [13] T. C. Chen, “The Design of the PEMFC’s Endplate and the Investigation of Correlative performance,” Master Thesis, National Taiwan University, 2007
    [14] G. H. Neale and W. K. Nader, “Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles,” AIChE Journal 19, 112-119,1973.
    [15] J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration: influence on the performance of a PEMFC,” Journal of Power Sources 118, 172-178, 2003.
    [16] M. Prasanna, H. Y. Ha, E. A. Cao, et al., “Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal of Power Sources 84, 147-154, 2004.
    [17] J. G. Pharoah, “On the permeability of gas diffusion media used in PEM fuel cells,” Journal of Power Sources 144, 77-82, 2005.
    [18] H. Dohle, R. Jung, N. Kimiaie, et al., “Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells—experiments and simulation studies,” Journal of Power Sources 124, 371-384, 2003.
    [19] P. Zhou and C. W. Wu, “Numerical study on the compression effect of gas diffusion layer on PEMFC performance,” Journal of Power Sources 170, 93-100, 2007.
    [20] N. Zamel, X. Li and J. Shen, “Correlation for the effective gas diffusion coefficient in carbon paper diffusion media,” Energy Fuels 23, 6070-6078, 2009.
    [21] J. Ge, A. Higier, H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance,” Journal of Power Sources 159, 922–927, 2006.
    [22] 林佳慧,組裝壓力對PEMFC陰極兩相流影響計算分析,2009.
    [23] 工業材料雜誌301期,質子交換膜燃料電池金屬雙極板之研究發展現況
    [24] B. C. G. Steels and A. Heinzel, “Material for fuel-cell technologies,” Nature, v414, n15, pp345-352, 2001.
    [25] H. Tawfik, Y. Hung, D. Mahajan, “Metal bipolar plates for PEM fuel cell—A review,” Journal of Power Sources 163, pp.755-767, 2007.
    [26] V. Mishra, F. Yang, R. Pitchumani, “Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells”, Transactions of the ASME, Vol. 1, Nov. 2004
    [27] P. Zhou and C. W. Wu, “Numerical study on the compression effect of gas diffusion layer on PEMFC performance,” Journal of Power Sources 170, 93-100, 2007.
    [28] J.P. Feser, A.K. Prasad and S.G. Advani, “Experimental characterization of in-plane permeability of gas diffusion layers,” Journal of Power Sources 162, pp.1226-1231, 2006.
    [29] P. Zhou, C. W. Wu and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources 159, 1115-1122, 2006.
    [30] V. Mishra, F. Yang and R. Pitchumani, “Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cell,” Journal of Fuel Cell Science and Technology 1, 2004.
    [31] L. Zhang, Y. Liu, H. Song et al., “Estimation of contact resistance in proton exchange membrane fuel cells,” Journal of Power Sources 162, 1165-1171, 2006.
    [32] G. H. Neale and W. K. Nader, “Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles,” AIChE Journal 19, 112-119, 1973.
    [33] J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration: influence on the performance of a PEMFC,” Journal of Power Sources 118, 172-178, 2003.
    [34] M. Prasanna, H. Y. Ha, E. A. Cao, et al., “Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal of Power Sources 84, 147-154, 2004.
    [35] Mike, R. Toyota Offers Fuel-Cell Patents to Other Car Makers: Japan’s Largest Auto Maker Hopes to Spur Wider Use of Hydrogen to Power Vehicles. WSJ, 2015, please refer to https://www.wsj.com/articles/toyota-offers-its-fuel-cell-patents-to-other-car-makers-1420494500 (accessed on 26/10/2021).
    [36] 陳震宇,發展金屬雙極板以降低質子交換膜燃料電池之成本,2019.
    [37] Kusoglu, A.; Karlsson, A.M.; Santare, M.H.; Cleghorn, S.; Johnson, W.B. Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. J. Power Sources 2006, 161, 987–996.
    [38] Vlahinos, A.; Kelly, K.; Mease, K.; Stathopoulos, J. Shape Optimization of Fuel Cell Molded-On Gaskets for Robust Sealing. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Irvine, California, USA. June 19–21, 2006; pp. 871–877.
    [39] 林敬軒,氮化鈦鍍膜不鏽鋼雙極板用於呼吸式燃料電池之性能研究,2021.
    [40] 材料成型与加工工艺学Materials processing and forming technology https://zhuanlan.zhihu.com/p/170199935,2020

    QR CODE