研究生: |
安德列 Andrey Victorovich Katkov |
---|---|
論文名稱: |
銻與氫於InAs/GaAs(001)分子束磊晶之表面活性劑效應 Antimony and Hydrogen Surfactant Effect on the Groth of InAs/GaAs(001) by Molecular Beam Epitaxy |
指導教授: |
李志浩
Lee, Chih-Hao 祁錦雲 Chi, Jim |
口試委員: |
賴聰賢
Lay, Tsong-Sheng 林聖迪 Lin, Sheng-Di 林國瑞 Lin, Gray 王慶鈞 Wang, Ching-Chiun |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 分子束磊晶 、化合物半導體 、活化劑 、氫缺陷鈍化 |
外文關鍵詞: | Molecular Beam Epitaxy, Compound semiconductor, Surfactant, Hydrogen defect passivation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The interest in the InAs/GaAs(001) hetero-structure is caused by its potential device applications such as quantum dot based infrared laser diodes emitting in 1.3μm spectral range and infrared photo-detectors. High electron mobility of InAs makes this material a potential candidate for high-speed channel in the metal-oxide semiconductor field-effect transistor. In addition to multiple device applications, high lattice mismatch between InAs and GaAs materials (7.2%) makes InAs/GaAs hetero-structure an interesting object from fundamental crystal growth approach.
The first part of this thesis deals with the effect of monolayer level amount of antimony pre-deposited on the bare GaAs(001) surface prior to InAs growth in In-rich mode. Two different types of energy relaxation mechanisms are demonstrated depending on the presence of antimony pretreatment in InAs/GaAs(001) heterosystem. In-situ observations of reflection of high-energy electron diffraction pattern indicate that, as its thickness increases, relaxation of InAs layer grown on the Sb-induced template takes place through the faceting (or Stranski-Krastanov growth mode). Energy relaxation in the Sb-free case takes place through formation of Lomer type edge dislocations at the InAs/GaAs interface, and the InAs growth mode follows layer-by-layer Frank - van der Merwe mechanism according to multiple observations reported by other research groups. A possible model based on the surface energy consideration is proposed in order to explain this behavior.
The second part of the thesis describes the effect of irradiation by hydrogen plasma during growth on the optical properties of InAs based quantum dot structure and its optical properties stability after high temperature annealing. In contrast to the majority of studies published to date, where atomic hydrogen is formed by high temperature cracking of molecular hydrogen on the tungsten filament, industrial made radio-frequency hydrogen plasma source made by EPI (now VEECO) has been used in this work. In addition to very efficient low temperature surface oxide desorption from the GaAs(001) substrate prior to starting growth, we found that room
temperature photoluminescence intensity from InAs based quantum dot structure increases by about an order of magnitude with the use of H-assisted growth, compared with H-free run. The combination of low temperature photoluminescence and plane view transmission electron microscopy technique leads us to conclude that the use of hydrogen plasma during growth significantly improves uniformity of InAs quantum dots as well.
InAs/GaAs(001)異質結構有許多重要的元件應用,如在砷化鎵基板製作
1.3微米量子點雷射及量子點紅外光電探測器。高電子遷移率的InAs亦可應
用於高速的金屬氧化物半導體場效應晶體管(MOSFET)。除了元件應用外
,砷化銦和砷化鎵材料(7.2%)之間的高晶格失配在InAs/GaAs異質結構
磊晶時產生的效應與現象亦是有趣的基礎研究課題。
本論文主要是探討於分子束磊晶(MBE)時銻原子與氫原子的效應。論
文的第一部分,探討銻原子在GaAs(001)表面之預處理對成長於其上之InAs
生長模式的影響。實驗觀察到不同的銻預處理過程會導致兩種不同類型的
晶格能量弛豫機制,由原位的反射高能電子衍射圖案的觀測顯示,當厚度
增加時,在不同Sb-產生的模板上生長之InAs層其能量弛豫機制是通過為形
成微晶面 (faceting) 的方式進行(亦稱Stranski-Krastanov的生長模式)。而在無銻的情況下InAs/GaAs磊晶之弛豫機制,是在介面形成魯姆爾
(Lomer) 型位錯的法蘭克-凡德爾莫維 (Frank - van der Merwe) 成長機制。後一種機制與其他研究小組的實驗報告類似。我們提出了一個表面能量的
模型來解釋這兩種能量弛豫現象。論文的第二部分探討了在生長時加上氫等離子體輻照對材料光學性能的影響。本實驗所用之氫輻照與大多數研究不同,一般使用以鎢燈絲高溫裂解氫分子形成之氫原子,而本實驗是使用RF頻率氫等離子體電漿源(美
國VEECO製造)。實驗發現,在高溫退火後InAs量子點結構及光學性能之
變化甚微,但在發光性能上,氫輔助生長的量子點,相比於無
H處理的樣品,其室溫光激發發光強度增強一個數量級。此外本實驗又發
現氫等離子體輻照是一非常有效的,低溫GaAs(001)表面氧化層清除步驟
。又經由低溫光激發和平面視透射電鏡技術的觀察,發現在生長過程的使
用氫等離子體照射顯著提高了InAs 量子點及均勻性
[1] Portavoce, M. Kammler, R. Hull, M. C. Reuter, M. Copel, and F. M. Ross, “Growth kinetics of Ge islands during Ga-surfactant-mediated ultrahigh vacuum chemical vapor deposition on Si(001).” Phys. Rev. B 70, 195306 (2004).
[2] E. Tournie, N. Grandjean, A. Trampert, J. Massies, K.H. Ploog, “Surfactant-mediated molecular-beam epitaxy of III-V strained-layer heterostructures.” J. Cryst. Growth 150, 460 (1995).
[3] H. Okumura, H. Hamaguchi, G. Feuillet, Y. Ishida and S. Yoshida, “Arsenic surfactant effects and arsenic mediated molecular beam epitaxial growth for cubic GaN.” Applied Physics Letters 72, 3056 (1998).
[4] W. Pei, B. Turk, J. B. Héroux, and W. I. Wang, “GaN grown by molecular beam epitaxy with antimony as surfactant.” J. Vac. Sci. Technol. B 19, 1426 (2001).
[5] R.R. Wixom, L.W. Rieth, G.B. Stringfellow, “Sb and Bi surfactant effects on homo-epitaxy of GaAs on (0 0 1) patterned substrates.” J. of Cryst. Growth 265 367 (2004).
[6] Kandel and E. Kaxiras, “The Surfactant Effect in Semiconductor Thin-Film Growth.” Solid State Physics 54, 219 (2000).
[7] Bruce A. Joyce, Tim B. Joyce, “Basic studies of molecular beam epitaxy—past, present and some future directions.” J. Cryst. Growth 264, 605 (2004).
[8] T. J. Rogers, “Molecular beam epitaxy in a high-volume GaAs fab.” J. Cryst. Growth. 311, 1671 (2009).
[9] R. Hill, D. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, and I. Thayne, “High Mobility III-V MOSFET Technolog.”, CS MANTECH Conference, May 14-17, 235-238 (2007) Austin, Texas, USA.
[10] T.A.Flaim and P.D.Ownby, “Observations on Bayard–Alpert Ion Gauge Sensitivities to Various Gases.” J. Vac. Sci. Technol. 8, 661 (1971).
[11] E.S. Tok, J.H. Neave, J. Zhang, B.A. Joyce, T.S. Jones, “Arsenic incorporation kinetics in GaAs(001) homoepitaxy Revisited” Surf. Sci. 374, 397405 (1997).
[12] John R. Arthur, “Molecular beam epitaxy.” Surf. Sci. 500, 189 (2002).
[13] Kevin F. Brennan, “The Physics of Semiconductors.” Cambridge University Press, (1999).
[14] R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy-gap discontinuities and effective masses for GaAs-AlxGal-xAs quantum wells.” Phys. Rev B 29, 7085 (1984).
[15] W. James, “The Dynamical Theory of X-Ray Diffraction.” Sol. State Phys. 15, 53 (1963).
[16] M. Sato, T. Kawaguchi, and S. Nishi, “Precise thickness measurement within a few monolayers by X-ray.” J. Cryst. Growth 150, 508 (1995).
[17] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current.” Appl. Phys. Lett. 40, 939 (1982).
[18] Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments.” Materials Today 14, 388 (2011).
[19] Popescu, G.Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells.” Phys. Rev. B 78, 205321 (2008).
[20] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dots enhanced GaAs solar cells.” Appl. Phys. Lett. 92, 123512 (2008).
[21] B.A. Joyce, D.D. Vvedensky, T.S. Jones, M. Itoh, G.R. Bell, J.G. Belk, “In situ studies of III-V semiconductor film growth by molecular beam epitaxy” J. Cryst. Growth. 201/202 (1999) 106.
[22] Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum Dot Heterostructures.” Wiley, Chichester, 1999.
[23] D. K. Schroder, “Semiconductor Material and device characterization.” 3-rd edition, Wiley, 2006.
[24] W. Seifert, N. Carlsson, M. Miller, M.-E. Pistol, L. Samuelson, and L. R. Wallenberg, “In-situ growth of quantum dot structures by Stranski-Krastanov growth mode.” Prog. Cryst. Growth and Charact. 33, 423 (1996).
[25] K. Jacobi, “Atomic structure of InAs quantum dots on GaAs.” Progr. Surf. Sci. 71, 185–215 (2003).
[26] R. J. Asaro and W. A. Tiller, “Interface Morphology Development During Stress Corrosion Cracking: Part I. Via Surface Diffusion.” Metallurgical Transactions 3, 1789 (1972).
[27] M.Ya. Grinfeld, “Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt.” Dokl. Akad. Nauk SSSR 290 (1986) 1358 [Sov. Phys. Dokl. 31 (1986) 831].
[28] D. J. Srolovitz, “On the stability of surfaces of stressed solids.” Acta metal. 37, 621 (1989).
[29] P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, “Instabilities in crystal growth by atomic or molecular beams.” Physics Reports 324, 271 (2000).
[30] W. Jost, “Diffusion in Solids, Liquids, Gases.” (Academic Press, Inc., New York, 1952).
[31] K. Potschke, L. Muller-Kirsch, R. Heitz, R.L. Sellin, U.W. Pohl, D. Bimberg, N. Zakharov, P. Werner, “Ripening of self-organized InAs quantum dots.” Physica E 21, 606 (2004).
[32] Rosenauer, U. Fischer, and D. Gerthsen, A. Forster, “Composition evaluation of InxGa1-xAs Stranski-Krastanow-island structures by strain state analysis.” Appl. Phys. Lett. 71, 3868 (1997).
[33] D. Guimard, H. Lee, M. Nishioka, and Y. Arakawa, “Growth of high-uniformity InAs/GaAs quantum dots with ultralow density below 107cm-2 and emission below 1.3µm.” Appl. Phys. Lett. 92, 163101 (2008).
[34] M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, “Surfactants in Epitaxial Growth.” Phys. Rev. Lett. 63, 632 (1989).
[35] M. Copel, M. C. Reuter, M. Horn von Hoegen, and R. M. Tromp, “Influence of surfactants in Ge and Si epitaxy on Si(001).” Phys. Rev. B 42, 11682 (1990).
[36] D. Kandel and E. Kaxiras, “Surfactant Mediated Crystal Growth of Semiconductors.” Phys. Rev. Lett. 75, 2742 (1995).
[37] T. F. Wietler, E. Bugiel, and K. R. Hofmann, “Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si(001) with low defect densities.” Appl. Phys. Lett. 87, 182102 (2005).
[38] D. Tetzlaff, T. F. Wietler, E. Bugiel, and H. J. Osten, “Carbon-mediated growth of thin, fully relaxed germanium films on silicon.” Appl. Phys. Lett. 100, 012108 (2012).
[39] H. J. Osten, J. Klatt, G. Lippert, B. Dietrich, and E. Bugiel, “Surfactant-Controlled Solid Phase Epitaxy of Germanium on Silicon” Phys. Rev. Lett. 69, 450 (1992).
[40] K. Sakomoto, K. Kyoya, K. Miki, H. Matsuhata, and T. Sakamoto, “Which Surfactant Shall We Choose for the Heteroepitaxy of Ge/Si(00l)? - Bi as a Surfactant with Small Self-Incorporation.” Jpn. J. Appl. Phys. 32, L 204 (1993).
[41] Sakai and T. Tatsumi, “Ge growth on Si using atomic hydrogen as a surfactant.” Appl. Phys. Lett. 64, 52 (1994).
[42] Sakai, T. Tatsumi, and K. Aoyama, “Growth of strain-relaxed Ge films on Si(001) surfaces.” Appl. Phys. Lett. 71, 3510 (1997).
[43] S. Zaima, K. Sato, T. Kitani, T. Matsuyama, H. Ikeda, and Y. Yasuda, “Surfactant effect of H atoms on the suppression of Ge segregation in Si overgrowth on Ge(n ML)/Si(100) substrates by gas source molecular beam epitaxy.” J. Cryst. Growth 150, 944 (1995).
[44] J. Massies and N. Grandjean, “Surfactant effect on the surface diffusion length in epitaxial growth.” Phys. Rev. B 48, 8502 (1993).
[45] W. J. Schaffer, M. D. Lind, S. P. Kowalczyk, and R. W. Grant, “Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction.” J. Vac. Sci. Technol. B1, 688 (1983).
[46] Tournie, A. Trampert and K. H. Ploog, “Interplay between Surface Stabilization, Growth Mode and Strain Relaxation during Molecular-Beam Epitaxy of Highly Mismatched III-V Semiconductor Layers.” Europhys. Lett., 25, 663 (1994).
[47] W. Snyder, B. G. Orr and H. Munekata, “Effect of surface tension on the growth mode of highly strained InGaAs on GaAs( 100).” Appl. Phys. Lett. 62, 46 (1993).
[48] J. Whaley and P. I. Cohen, “Relaxation of strained InGaAs during molecular beam epitaxy,.” Appl. Phys. Lett. 57, 144 (1990).
[49] Sh. Jiang, Y. H. Qu, H. Q. Ni, D. H. Wu, Y. Q. Xu, Z. C. Niu, “Optical properties of InGaAs/GaAs quantum wells grown by Sb-assisted molecular beam epitaxy.” J. Cryst. Growth 288, 12 (2006).
[50] J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 mm emission.” Appl. Phys. Lett. 84, 3981 (2004).
[51] T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, and F. Koyama, “Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy.” J. Appl. Phys. 96, 44 (2004).
[52] T.Sato, M. Mitsuhara, and Y. Kondo, “Sb surfactant-mediated growth of strained InGaAs multiple-quantum wells by metalorganic vapor phase epitaxy at low growth temperatures.” J. Cryst. Growth 312, 359 (2010).
[53] R. Timm, H. Eisele, A. Lenz, T.-Y. Kim, F. Streicher, K. Pötschke, U.W. Pohl, D. Bimberg, M. Dähne, “Structure of InAs/GaAs quantum dots grown with Sb surfactant.” Physica E32, 25 (2006).
[54] M. Ohta, T. Kanto and K.Yamaguchi, “Self-Formation of High-Density and High-Uniformity InAs Quantum Dots on Sb/GaAs Layers by Molecular Beam Epitaxy.” Jpn. J. Appl. Phys. 45, 3429 (2006).
[55] K. Yamaguchi, K. Yujobo, and T. Kaizu, “Stranski-Krastanov growth of InAs quantum dots with narrow size distribution.” Jpn. J. Appl. Phys. 39, L1245 (2000).
[56] K. Yamaguchi and T. Kanto, “Self-assembled InAs quantum dots on GaSb/GaAs(001) layers by molecular beam epitaxy.” J. Cryst. Growth 275, e2269 (2005).
[57] T. Kanto and K. Yamaguchi, “In-plane self-arrangement of high-density InAs quantum dots on GaAsSb/GaAs(001) by molecular beam epitaxy.” J. Appl. Phys. 101, 094901 (2007).
[58] N. Kakuda, T. Yoshida, and K. Yamaguchi, “Sb-mediated growth of high-density InAs quantum dots and GaAsSb embedding growth by MBE.” Appl. Surf. Sci. 254, 8050 (2008).
[59] Yu. I. Mazur, V. G. Dorogan, G. J. Salamo, G. G. Tarasov, B. L. Liang, C. J. Reyner, K. Nunna, and D. L. Huffaker, “Coexistence of type-I and type-II band alignments in antimony-incorporated InAsSb quantum dot nanostructures.” Appl. Phys. Lett. 100, 033102 (2012).
[60] D. Guimard, M. Nishioka, S. Tsukamoto, Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(100) quantum dots grown by metalorganic chemical-vapor deposition.” J. Cryst. Growth 298, 548 (2007).
[61] D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “High density InAs/GaAs quantum dots with enhance photoluminescence using antimony surfactant-mediated metal organic chemical vapor deposition.” Appl. Phys. Lett. 89, 183124 (2006).
[62] J. Hopwood, “Review of inductively coupled plasmas for plasma processing.” Plasma Sources Sci. Technol. 1, 109 (1992).
[63] United States Patent US005698168A.
[64] T. Kaizu, M. Takahasi, K. Yamaguchi, and J. Mizuki, “In situ determination of Sb distribution in Sb/GaAs(001) layer for high-density InAs quantum dot growth.” J. Cryst. Growth 310, 3436 (2008).
[65] J.E. Bickel, C. Pearson and J. Mirecki Millunchick, “Sb incorporation at GaAs(001)-(2×4) surfaces.” Surf. Sci. 603, 14 (2009).
[66] L.J. Whitman, B.R. Bennett, E.M. Kneedler, B.T. Jonker, and B.V. Shanabrook, “The structure of Sb-terminated GaAs(001) surfaces.” Surf. Sci. 436, L707 (1999).
[67] P. Laukkanen, R. E. Perälä, R.-L. Vaara, I. J. Väyrynen, M. Kuzmin, and J. Sadowski, “Electronic and structural analysis of Sb-induced GaAs(100)(2×4) and (2×8) surfaces.” Phys. Rev. B 69, 205323 (2004).
[68] Ch. Heyn, A. Bolz, T. Maltezopoulos, R.L. Johnson, and W. Hansen, “Intermixing in self-assembled InAs quantum dot formation.” J. Cryst. Growth 278, 46 (2005).
[69] R. P. Mirin, A. Roshko, M. van der Puijl, and A. G. Norman, “Formation of InAs/GaAs quantum dots by dewetting during cooling.” J. Vac. Sci. Technol. B 20, 1489 (2002).
[70] Grosse, W. Barvosa-Carter, J. J. Zinck, and M. F. Gyure, “Atomistics of III–V semiconductor surfaces: Role of group V pressure.” J. Vac. Sci. Technol. B 20, 1178 (2002).
[71] P.K. Larsen and D.J. Chadi, “Surface structure of As-stabilized GaAs(001): (2×4), c(2×8), and domain structures.” Phys. Rev. B 37, 8282 (1988).
[72] N. Kakuda, S. Tsukamoto, A. Ishii, K. Fujiwara, T. Ebisuzaki, K. Yamaguchi, Y. Arakawa, “Surface reconstructions on Sb-irradiated GaAs(001) formed by molecular beam epitaxy.” Microelectronics Journal 38 620 (2007).
[73] M. Xiong1, M. Li, Y. Qiu, Y. Zhao, L. Wang, and L. Zhao, “Investigation of antimony for arsenic exchange at the GaSb covered GaAs (001) surface.” Phys. Stat. Solidi B 247, 303 (2010).
[74] J. E. Bickel, N. A. Modine, C. Pearson, and J. M. Millunchick, “Elastically induced coexistence of surface reconstructions” Phys. Rev. B 77, 125308 (2008).
[75] V. P. Vasil’ev and J.-C. Gachon, “Thermodynamic Properties of III–V Compounds.” Inorg. Mat. 42, 1176 (2006).
[76] L. Di Cioccio, E. Jalaguier, and F. Letertre, “III–V layer transfer onto silicon and applications.” Phys. Stat. Sol. (a) 202, 509 (2005).
[77] Z. F. Di, Y. Q. Wang, M. Nastasi, F. Rossi, L. Shao, and P. E. Thompson, “Effect of temperature on layer separation by plasma hydrogenation.” Appl. Phys. Lett. 93, 254104 (2008).
[78] W.S. Hobson, “The role of the hydrogen in the growth of III-V semiconductors by OMVPE.” Mat. Sci. Forum 148-149, 27 (1994).
[79] M. de Keijser and C. van Opdorp, “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen.” Appl. Phys. Lett. 58, 1187 (1991).
[80] T. Meguro, H. Isshiki, I.-S. Lee, S. Iwai, Y. Aoyagi, “Effects of active hydrogen on atomic layer epitaxy of GaAs.” Appl. Surf. Sci. 112, 118 (1997).
[81] F.Ren, “Sources of hydrogen in III-V device processing.” Mat. Sci. Forum 148-149, 141 (1994).
[82] C.R. Abernathy, “The role of hydrogen in UHV growth of III-V semiconductors” Mat. Sci. Forum 148-149, 3 (1994).
[83] G. Laurence, F. Simondet, and P. Saget, “Combined RHEED-AES study of the thermal treatment of (001) GaAs surface prior to MBE growth” Appl. Phys. 19, 63 (1979).
[84] O. E. Tereshchenko, “Preparation of As-rich (2×4) – III-As (001) surfaces by wet chemical treatment and vacuum annealing.” Phys.Stat. Solidi C 7, 264 (2010).
[85] Khatiri, J.M. Ripalda, T.J. Krzyzewski, G.R. Bell, C.F. McConville, T.S. Jones, “Atomic hydrogen cleaning of GaAs(001):a scanning tunnelling microscopy study.” Surf. Sci. Lett. 548, L1 (2004).
[86] A. Khatiri, T.J. Krzyzewski, C.F. McConville, T.S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces.” J. Cryst. Growth 282, 1 (2005).
[87] H. Nagano, Z. Qin, A. Jia, Y. Kato, M. Kobayashi, A. Yoshikawa, K. Takahashi, “Atomically flat (001)GaAs surface prepared by two-step atomic-hydrogen treatment and its application to heteroepitaxy of GaN.” J. Cryst. Growth 189/190, 265 (1998).
[88] K. Yamaguchi, Z. Qin, H. Nagano, M. Kobayashi, A. Yoshikawa, and K. Takahashi, “Atomically Flat GaAs(001) Surfaces Obtained by High-Temperature Treatment with Atomic Hydrogen Irradiation.” Jpn. J. Appl. Phys. 36, L1367 (1997).
[89] K. G. Eyink and L. Grazulis, “Combined in situ and ex situ analysis of hydrogen radical and thermal removal of native oxides from (001)GaAs.” J. Vac. Sci. Technol. B 23, 554 (2005).
[90] E. J. Petit, F. Houzay, and J. M. Moison, “Interaction of atomic hydrogen with native oxides on GaAs(100).” J. Vac. Sci. Technol. A 10, 2172 (1992).
[91] E. J. Petit and F. Houzay, “Optimal surface cleaning of GaAs (001) with atomic hydrogen.” J. Vac. Sci. Technol. B 12, 547 (1994).
[92] A.V. Katkov, C.C. Wang, J.Y. Chi, C. Cheng, A.K. Gutakovskii, “Optical property improvement of InAs/GaAs quantum dots grown by hydrogen-plasma-assisted molecular beam epitaxy.” J. Vac. Sci. Technol. B 29, 03C127-1 (2011).
[93] C. M. Rouleau and R. M. Park, “GaAs substrate cleaning for epitaxy using a remotely generated atomic hydrogen beam.” J. Appl. Phys. 73, 4610 (1993).
[94] A. Takamori, S. Sugata, K. Asakawa, E. Miyauchi, and H. Hashimoto, “Cleaning of MBE GaAs Substrates by Hydrogen Radical Beam Irradiation.” Jpn. J. Appl. Phys. 26, L142 (1987).
[95] K. D. Choquette, M. Hong, R.S. Freund, J. P. Mannaerts, and R.C. Wetzel, “Electron cyclotron resonance plasma preparation of GaAs substrates for molecular beam epitaxy.” J. Vac. Sci. Technol. B 9, 3502 (1991).
[96] A. Kishimoto, I. Suemune, K. Hamaoka, T. Koui, Y. Honda, and M. Yamanishi, “In- Situ RHEED Monitoring of Hydrogen Plasma Cleaning on Semiconductor Surfaces.” Jpn. J. Appl. Phys. 29, 2273 (1990).
[97] R W. Bernstein and J. K. Grepstad, “GaAs(100) substrate cleaning by thermal annealing in hydrogen.” J. Vac. Sci. Technol. A 7, 581 (1989).
[98] W. Wicks, E. R. Rueckwald, and M. W. Koch, “Analysis of cracking efficiency of an atomic hydrogen source, and its effect on desorption of AlxGa1-xAs native oxides.” J. Vac. Sci. Technol. B 14, 2184 (1996).
[99] M. Yamada, Y. Ide and K. Tone, “Effect of Atomic Hydrogen on GaAs (001) Surface Oxide Studied by Temperature-Programmed Desorption.” Jpn. J. Appl. Phys. 31, L1157 (1992).
[100] Y. Ide and M. Yamada, “Role of Ga2O in the removal of GaAs surface oxides induced by atomic hydrogen.” J. Vac. Sci. Technol. A 12, 1858 (1994).
[101] M. Yamada and Y. Ide, “Direct Observation of Species Liberated from GaAs Native Oxides during Atomic Hydrogen Cleaning.” Jpn. J. Appl. Phys. Vol. 33, L671 (1994).
[102] Y. Q. Chen, T. Unuvar, D. Moscicka, and W. I. Wang, “Hydrogen-plasma assisted molecular beam epitaxial growth of high-purity InAs.” J. Vac. Sci. Technol. B 24, 1599 (2006).
[103] G.R. Bell, N.S. Kaijaks, R.J. Dixon, and C.F. McConville, “Atomic hydrogen cleaning of polar III–V semiconductor surfaces.” Surf. Sci. 401, 125 (1998).
[104] C.L. Chang, V. Shutthanandan, and S. C. Singhal, “In situ ion scattering and x-ray photoelectron spectroscopy studies of stability and nanoscale oxidation of single crystal (100) InAs.” Appl. Phys. Lett. 90, 203109 (2007).
[105] Y. Lyadov, R. Akhvlediani, A. Hoffman, O. Klin, and E. Weiss, “Novel oxides and carbon contamination removal from InAs(100) surface by molecular hydrogen flow at moderate substrate temperatures: Stoicheometric and morphological studies.” J. Appl. Phys. 107, 053518 (2010).
[106] Z. Lu, Y. Jiang, W. Wang, M. C. Teich, and R. M. Osgood, Jr., “GaSb-oxide removal and surface passivation using an electron cyclotron resonance hydrogen source.” J. Vac. Sci. Technol. B 10, 1856 (1992).
[107] Y. J. Chun, T. Sugaya, Y. Okada, and M. Kawabe, “Low Temperature Surface Cleaning of InP by Irradiation of Atomic Hydrogen.” Jpn. J. Appl. Phys. 32, L 287 (1993).
[108] S. R. Vangala, H. Dauplaise, C. Santeufemio, C. Lynch, P. Alcorn, L.P. Allen, G. Dallas, K. Vaccaro, D. Bliss, and W. D. Goodhue, “Atomic Hydrogen Cleaning of Epiready InSb (100), (111)B, and GCIB Processed InSb (111)B Surfaces.” CS MANTECH Conference, p.114, May 14-17, 2007, Austin, Texas, USA.
[109] B. Anthony, L. Breaux, T. Hsu, S. Banerjee, and A. Tasch, “In situ cleaning of silicon substrate surfaces by remote plasma-excited hydrogen.” J. Vac. Sci. Technol. B 7, 621 (1989).
[110] H.S. Tae, S.J. Park, S.H. Hwang, K.H. Hwang, E. Yoon, and K.W. Whang, “Low-temperature in situ cleaning of silicon (100) surface by electron cyclotron resonance hydrogen plasma.” J. Vac. Sci. Technol. B 13, 908 (1995).
[111] A. Aßmuth, T. Stimpel-Lindner, O. Senftleben, A. Bayerstadler, T. Sulima, H. Baumgärtner, I. Eisele, “The role of atomic hydrogen in pre-epitaxial silicon substrate cleaning.” Appl. Surf. Sci. 253, 8389 (2007).
[112] H. Shimomura, Y. Okada, and M. Kawabe, “Low Dislocation Density GaAs on Vicinal Si(100) Grown by Molecular Beam Epitaxy with Atomic Hydrogen Irradiation.” Jpn. J. Appl. Phys. 31, L628 (1992).
[113] A. R. Calawa, “Effect of H2 on residual impurities in GaAs MBE layers.” Appl. Phys. Lett. 33, 1020 (1978).
[114] Y. Pao, D. Liu, W. S. Lee, and J. S. Harris, “Effect of hydrogen on undoped and lightly Si-doped molecular beam epitaxial GaAs layers.” Appl. Phys. Lett. 48, 1291 (1986).
[115] A. Bosacchi, S. Franchi, C. Ghezzi, E. Gombia, and M. Guzzi, “DLTS and photoluminescence of MBE GaAs grown in the presence of hydrogen.” J. Cryst. Growth 81, 181 (1987).
[116] Y. Okada and J.S. Harris, Jr., “Basic analysis of atomic-scale growth mechanisms for molecular beam epitaxy of GaAs using atomic hydrogen as a surfactant.” J. Vac. Sci. Technol. B 14, 1725 (1996).
[117] Y. Morishita, Y. Nomura, S. Goto, and Y. Katayama, “Effect of hydrogen on the surface-diffusion length of Ga adatoms during molecular-beam epitaxy.” Appl. Phys. Lett. 67, 2500 (1995).
[118] T. Sugaya, Y. Okada and M. Kawabe, “Selective Growth of GaAs by Molecular Beam Epitaxy.” Jpn. J. Appl. Phys. 31, L713 (1992).
[119] M. Kawabe, “Selective growth and other applications of hydrogen-assisted molecular beam epitaxy.” J. Cryst. Growth 150, 370 (1995).
[120] R.R. LaPierre, B.J. Robinson, and D.A. Thompson, “Growth mechanisms of III-V compounds by atomic hydrogen-assisted epitaxy.” J. Cryst. Growth 191, 319 (1998).
[121] Y. Okada, T. Sugaya, Sh. Ohta, T. Fujita, and M. Kawabe, “Atomic Hydrogen-Assisted GaAs Molecular Beam Epitaxy.” Jpn. J. Appl. Phys. 34, 238 (1995).
[122] R. M. Sieg, J. A. Carlin, J. J. Boeckl, and S. A. Ringel, M. T. Currie, S. M. Ting, T. A. Langdo, G. Taraschi, and E. A. Fitzgerald, B. M. Keyes, “High minority-carrier lifetimes in GaAs grown on low-defect-density Ge/GeSi/Si substrates.” Appl. Phys. Lett. 73, 3111 (1998).
[123] J. Z. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect Reduction of GaAs/Si Epitaxy by aspect ratio trapping.” J. Appl. Phys. 103, 106102 (2008).
[124] K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder, S. Rockwell, J. Holmes, C. Overgaard, and W. Ooms, “GaAs MESFETs Fabricated on Si Substrates Using a SrTiO3 Buffer Layer.” IEEE Electron Device Letters, 23, 300 (2002).
[125] Y. Okada, S. Ohta, H. Shimomura, A. Kawabata and M. Kawabe, “High-Quality GaAs Films on Si Substrates Grown by Atomic Hydrogen-Assisted Molecular Beam Epitaxy for Solar Cell Applications.” Jpn. J. Appl. Phys. 32, L1556 (1993).
[126] H. Shimomura, Y. Okada, H. Matsumoto, M. Kawabe, Y. Kitami, and Y. Bando, “Reduction Mechanism of Dislocation Density in GaAs Films on Si Substrates.” Jpn. J. Appl. Phys. 32, 632 (1993).
[127] Y. Okada, H. Shimomura, and M. Kawabe, “Low dislocation density GaAs on Si heteroepitaxy with atomic hydrogen irradiation for optoelectronic integration.” J. Appl. Phys. 73, 7376 (1993).
[128] S. Ohta, Y. Okada, and M. Kawabe, “Effect of atomic hydrogen irradiation in low-temperature GaAs/Si heteroepitaxy.” J. Cryst. Growth 150, 661 (1995).
[129] Y. Shimizu and Y. Okada, “Growth of high-quality GaAs/Si films for use in solar cell applications.” J. Cryst. Growth 265, 99 (2004).
[130] S. F. Fang, K. Matsushita, and T.Hariu, “Plasma-assisted epitaxial growth of InAs.” Appl. Phys. Lett. 54, 1338 (1989).
[131] Y. J. Chun, Y. Okada, and M. Kawabe, “Surfactant Effects of Atomic Hydrogen on Low-Temperature Growth of InAs on InP.” Jpn. J. Appl. Phys. 35, L1689 (1996).
[132] M. Yokozeki, H. Yonezu, T. Tsuji, and N. Ohshima, “Passivation of misfit dislocations by atomic hydrogen irradiation in lattice-mismatched heteroepitaxy.” J. Cryst. Growth 175/176, 435 (1997).
[133] M. Yokozeki, H. Yonezu, T. Tsuji, N. Ohshima, and K. Pak, “Reduction of Threading Dislocation Density in an (InAs)1(GaAs)1 Strained Short-Period Superlattice by Atomic Hydrogen Irradiation.” Jpn. J. Appl. Phys. 35, 2561 (1996).
[134] S. Kim, M. Kawabe, N. Koguchi, D.-Y. Lee, J. S. Kim, and I.-H. Bae, “Structural and optical properties of InAs quantum dots regrown on atomis hydrogen-cleaned GaAs surface.” Appl. Phys. Lett. 87, 261914 (2005).
[135] Y. J. Chun, S. Nakajima, Y. Okada, and M. Kawabe, “The role of atomic hydrogen for formation of quantum dots by self-organizing process in MBE.” Physica B 227, 299 (1996).
[136] R. Oshima, A. Ohmae, and Y. Okada, “Fabrication of self-organized GaInNAs quantum dots by atomic H-assisted RF-molecular beam epitaxy.” J. Cryst.Growth 261, 11 (2004).
[137] R. Oshima and Y. Okada, “Growth of self-assembled GaInNAs quantum dots by atomic-H assisted RF molecular beam epitaxy.” Thin Solid Films 464–465, 229 (2004).
[138] Takata, R. Oshima, Y. Shoji, and Y. Okada, “Optical studies on InAs/InGaAs/GaNAs strain-compensated quantum dots grown on GaAs (001) by molecular beam epitaxy.” J. Cryst. Growth 311, 1774 (2009).
[139] Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy.” Physica E42, 2745 (2010).
[140] S. Mazzucato, D. Nardin, M. Capizzi, A. Polimeni, A. Frova, L. Seravalli, S. Franchi, “Defect passivation in strain engineered InAs/(InGa)As quantum dots.” Mat. Sci. Engin. C 25, 830 (2005).
[141] S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, L. Seravalli, P. Frigeri, and S. Franchi, M. Capizzi, S. Mazzuccato, and A. Polimeni, “Effective phonon bottleneck in the carrier thermalization of InAs/GaAs quantum dots.” Phys. Rev. B 78, 085313 (2008).
[142] C.Y. Cheng, H. Niu, C.H. Chen, T.N. Yang, H.Y. Wang, C.P. Lee, “Effect of proton-irradiation on photoluminescence emission from self-assembled InAs/GaAs quantum dots.” Nuclear Instruments and Methods in Physics Research B 261, 1171 (2007).
[143] R. Sreekumar, A. Mandal, S.K. Gupta, S. Chakrabarti, “Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (up to ~7 times) with minimum spectral signature shift.” Mat. Res. Bull. 46, 1786 (2011).
[144] W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, “Enhancement of room-temperature photoluminescence in InAs quantum dots.” Appl. Phys. Lett. 83, 4301 (2003).
[145] P. Jacob, Q. X. Zhao, M. Willander, F. Ferdos, M. Sadeghi, and S. M. Wang, “Hydrogen passivation of self assembled InAs quantum dots.” J. Appl. Phys. 92, 6794 (2002).
[146] Q.X. Zhao, A.P. Jacob, M. Willander, S.M. Wang, Y.Q.Wei, F. Ferdos, M. Sadeghi, A. Larsson, J.H. Yang, “Nonradiative centers in InAs dots grown on GaAs substrates for 1.3 μm emission.” Phys. Lett. A 315, 150 (2003).
[147] C. Le Ru, P. D. Siverns, and R. Murray, “Luminescence enhancement from hydrogen-passivated self-assembled quantum dots.” Appl. Phys. Lett. 77, 2446 (2000).
[148] S. J. Pearton, “Hydrogen in III-V Compound Semiconductors.” Mat. Sci. For. 148-149, 393 (1994).
[149] K. Matsushita, K. Sato, Y. Sato, Y. Sugiyama, T. Hariu, and Y. Shibata, “Plasma-Assisted Epitaxial Growth of GaAs and GaSb Layers in Hydrogen Plasma.” IEEE Trans. Electron Devices ED -31, 1092 (1984).
[150] Y. Sato, K. Matsushita, T. Hariu, and Y. Shibata, “Plasma-assisted epitaxial growth of GaSb in hydrogen plasma.” Appl. Phys. Lett. 44, 592 (1984).
[151] P. A. Postigo, F. Suárez, A. Sanz-Hervás, J. Sangrador, and C. G. Fonstad, “Growth of InP on GaAs(001) by hydrogen-assisted low-temperature solid source molecular beam epitaxy.” J. Appl. Phys. 103, 013508 (2008).
[152] R. Schűtz and H. L. Hartnagel, “New molecular beam epitaxy technique: radiofrequency plasma-assisted evaporation epitaxy for low temperature InP growth.” Int. J. Electronics 67, 233 (1989).
[153] R. W. Glew, A. R. Adam, C. G. Crookes, P. D. Greene, S. N. Holmes, S. A. Kltching, P. C. Klipsteins, D. Lancefield, R. A. Stradling, and R. A. Woolley, “High-purity InP and the role of hydrogen.” Semicond. Sci. Technol. 6, 1088 (1991).
[154] I. Aller and H.L. Hartnagel, “Selective Area Growth of InP by Plasma Assisted Solid-Source Epitaxy.” J. Electron. Mat. 25, 421 (1996).
[155] Private communication
[156] L. H. Aller, Astrophysics. “The Atmospheres of the Sun and Stars.” 2nd ed. (Ronald, New York, 1963), p. 111.
[157] S. Djurovi and J. R. Roberts, “Hydrogen Balmer alpha line shapes for hydrogen-argon mixtures in a low-pressure rf discharge.” J. Appl. Phys. 74, 6558 (1993).
[158] http://www.mbe-components.com/products/gas/habs.html
[159] G. Tschersich, J. P. Fleischhauer, and H. Schuler, “Design and characterization of a thermal hydrogen atom source.” J. Appl. Phys. 104, 034908 (2008).
[160] A. Sutoh, Y. Okada, Sh. Ohta, and M. Kawabe, “Cracking Efficiency of Hydrogen with Tungsten Filament.” Jpn. J. Appl. Phys. 34, L 1379 (1995).
[161] W. L. Gardner, “Sensor for measuring the atomic fraction in highly dissociated hydrogen.” J. Vac. Sci. Technol. A 13, 763 (1995).
[162] M. Abdel-Rahman, V. Schulz-von der Gathen, T. Gans, K. Niemi, and H. F. Döbele, “Determination of the degree of dissociation in an inductively coupled hydrogen plasma using optical emission spectroscopy and laser diagnostics.” Plasma Sources Sci. Technol. 15, 620 (2006).
[163] Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci A. Bosacchi, P. Frigeri, and S. Franchi, “Thermally activated carrier transfer and luminescence line shape in self-organized InAs quantum dots.” Appl. Phys. Lett. 69, 3354 (1996).
[164] S. Goto, Y. Nomura, Y. Morishita, Y. Katayama, and H. Ohno, “Effect of Hydrogen Radicals on the Reduction of Carbon Incorporation into GaAs Grown by Using Trimethylgallium.” Jpn. J. Appl. Phys. 33, 3825 (1994).
[165] Z. M. Fang, K. Y. Ma, R. M. Cohen, and G. B. Stringfellow, “Effect of growth temperature on photoluminescence of InAs grown by organometallic vapor phase epitaxy.” Appl. Phys. Lett. 59, 1446 (1991).