研究生: |
陳冠宇 Guan-Yu Chen |
---|---|
論文名稱: |
以模型為基礎的三維與四維心臟超音波之研發 Development of Model-based 3D and 4D Cardiac Ultrasound System |
指導教授: |
陳永昌
Yung-Chang Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 超音波 、三維 、四維 、以模型為基礎 、標準模型 |
外文關鍵詞: | ultrasound, 3D, 4D, model-based, standard model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的醫學影像領域中,CT和MRI雖然擁有相當良好的影像品質,但由於儀器昂貴和呈像時間較久,所以使用上有其不便之處;反觀超音波影像不但取像快速,且成本較為低廉,因此已經成為一項重要且普及的診療技術。二維超音波的問世提供了醫師完整的切面資訊,使得診療變得較為簡單、輕鬆;然而在某些情況之下,醫師還是需要使用想像力將分散的二維影像疊合成三維的立體影像,才能做出較為正確的判斷,因此三維超音波技術的研發,一直是近年來大家努力的目標。目前雖然已有商用三維超音波系統的問世,但受限於三維超音波探頭本身的設計,無法對心臟作完整的三維立體掃描,因此本論文的研究重心放在如何利用傳統的二維超音波探頭來掃描心臟資訊,建立心臟的三維立體影像。要建立三維的立體影像,必須先知道每張二維影像的位置,才能依據各影像的空間位置將其堆疊成為三維的立體影像;如何替二維超音波影像作空間定位便成為很重要的問題。我們建立了一個可調整的標準心臟模型,在作二維超音波掃描前先調整標準模型,建立類似病患心臟的三維心臟模型,有了類似病患心臟的模型,便能將之後所取得之二維超音波影像,經過電腦運算,計算出二維影像在模型中最有可能的位置。如此便能利用傳統的二維超音波探頭建立心臟的三維立體影像。
Though the medical image techniques of the present day, such as CT and MRI, produce images with good quality, the great expense for necessary equipment and the long time required for obtaining image data make these techniques unhandy. Contrary to these techniques, ultrasound imaging is superior for fast imaging and low cost. And it has been one of the most important and universal diagnostic tools nowadays.2D ultrasound provides physicians with entire 2D information and makes the diagnosis more easily. But in some situations, physicians still need to spend their imagination on building up a 3D image from separated 2D images for making correct diagnosis. So, 3D ultrasound related researches have received significant attention. Although the commercial 3D ultrasound system has been carried out, it can’t provide cardiac scanning due to the mechanical design of its transducer. So we put our attention on how to build up a 3D image from 2D ultrasound images. To build up a 3D volume, we need to know all the positions of 2D slices. And how to get the positions becomes an important problem. We create a standard heart model which can be modulated. Before making 2D ultrasound scanning, we can adapt the standard model to approach the patient’s heart model. Once having the patient’s heart model, we can compute the positions where the 2D slices are in the heart model.
[1] Meairs, S., Beyer, J. and Hennerici, M., “Reconstruction and visualization of irregularly sampled three- and four-dimensional ultrasound data for cerebrovascular applications,” Ultrasound in Medicine and Biology, 26 (2), 263–272, 2000.
[2] Berg, S., Torp, H., Martens, D., Steen, E., Samstad, S., Høivik, I. and Olstad, B., “Dynamic three-dimensional freehand echocardiography using raw digital ultrasound data,” Ultrasound in Medicine and Biology, 25 (5), 745–753, 1999.
[3] Hughes, S.W., D’Arcy, T.J., Maxwell, D.J., Chiu, W., Milner, A., Saunders, J.E. and Sheppard, R.J., “Volume estimation from multiplanar 2D ultrasound images using a remote electromagnetic position and orientation sensor,” Ultrasound in Medicine and Biology, 22 (5), 561–572, 1996.
[4] Leotta, D.F., Detmer, P.R. and Martin, R.W., “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound in Medicine and Biology, 24 (4), 597–609, 1997.
[5] R.W. Prager, R.N. Rohling, A.H. Gee and L. Berman, “Rapid calibration for 3-D freehand ultrasound,” Ultrasound in Medicine and Biology, 24 (6), 855–869, 1998.
[6] Daniel. F. Leotta, Paul R. Detmer, Odd Helge Gilja, Jing-Ming Jong, Roy W. Martin, Jean F. Primozich, Kirk W. Beach and D. Eugene Strandness, “Three-Dimensional ultrasound imaging using multiple magnetic tracking systems and miniature magnetic sensors,” Ultrasonics Symposium. Proc. IEEE, 1995.
[7] Ohbuchi, R., Chen, D. and Fuchs, H., “Incremental volume reconstruction and rendering for 3D ultrasound imaging,” In: Proceedings of Visualization in Biomedical Computing SPIE, pp. 312–323, 1992.
[8] Trobaugh, J.W., Trobaugh, D.J. and Richard, W.D., “Threedimensional imaging with stereotactic ultrasonography,” Computerized Medical Imaging and Graphics, 18 (5), 315–323, 1994.
[9] Mills, P. H., and Fuchs, H., “3D Ultrasound Display Using Optical Tracking.” First Conference on Visualization for Biomedical Computing. Atlanta, GA, 490-497
[10] Laurence Mercier, Thomas Lango, Frank Lindseth and D. Louis Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound in Medicine and Biology, 33 (4), 449–471, 2005.
[11] Marcin Wierzbicki, Maria Drangova, Gerard Guiraudo and Terry Peters, “Four-Dimensional Modeling of the Heart for Image Guidance of Minimally Invasive Cardiac Surgeries,” Proceedings of the SPIE, Volume 5367, 302-311, 2004.
[12] Thomas Berlage, Thorsten Fox, Gernoth Grunst and Klaus-Jurgen Quast, “Supporting Ultrasound Diagnosis Using An Animated 3D Model of the Heart,” Proceedings of IEEE Multimedia Computing and Systems, June 17-21, 1996.
[13] M. Weidenbach, C. Wick, S. Pieper, K. J. Quast, G. Grunst and D. A. Redel, ”Augmented Reality Simulator for Training in Two-Dimensional Echocardiography,” Computers and Biomedical Research, 33, 11-22, 2000.
[14] M. Sermesant, C. Forest, X. Pennec, H. Delingette and N. Ayache, “Deformable biomechanical models: Application to 4D cardiac image analysis,” Medical Image Analysis, 7, 475-488, 2003.
[15] Jinah Park and Samg-il Park, “Strain analysis and visualization: Left ventricle of a heart,” Computer and Graphics, 24, 701-714, 2000.
[16] Xenophon Papademetris, Albert J. Sinusas, Donald P. Dione, R. Todd Constable, and James S. Duncan, “Estimation of 3-D Left Ventricular Deformation Form Medical Images Using Biomechanical Models,” IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 2002.
[17] Gabor T. Herman, Jingsheng Zheng and Carolyn A. Bucholtz, “Shape-based Interpolation,” IEEE Computer Graphics and Applications, 12, 69-79, 1992.
[18] Maxime Taron, Nikos Paragios and Marie-Pierre jolly, “Border Detection on Short-Axis Echocardiographic Views Using a Region based Ellipse-Driven framework,” MICCAI, 1, 443-450, 2004.