簡易檢索 / 詳目顯示

研究生: 蔡鎔丞
Tsai, Rung-Cheng
論文名稱: 藉由果蠅中找尋與雌性交配偏好有關的基因
Searching for genes involved in female mating preference in Drosophila melanogaster
指導教授: 郭崇涵
Kuo, Tsung-Han
口試委員: 黃禎祥
NG, Chen-Siang
林愷悌
Lin, Kai-Ti
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 59
中文關鍵詞: 交配偏好交配時間分佈轉錄組
外文關鍵詞: mating preference, mating time distribution, transcriptome
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生殖行為是延續族群或物種的重要過程,因此許多動物衍生出形形色色的交配策略。果蠅的生殖行為已被廣泛研究了很多年。雖然大多數研究都集中在雄果蠅求偶行為上,但對雌果蠅交配的決定仍然所知甚少。來自辛巴威的雌性果蠅具有獨特的交配偏好,通常願意與相同品系的雄性交配,但是不願意接受其他品系的雄性求偶。該模型可為探索雌性交配決定中的因素提供研究機會。在這項研究中,我們驗證了部分辛巴威雌性(Z330、Z53)的偏好,並比較了暴露於不同雄性的雌性大腦中的轉錄組。從RNA-seq進行基因表達分析,並挑選出可能與雌性交配決定相關的候選基因。出乎意料的是,無論是定量PCR還是基因敲落實驗都無法確定候選基因的功能。儘管我們的策略無法揭示對交配有重大影響的任何候選基因,但我們認為本計畫為將來關於雌性交配偏好的研究提供了重要信息。


    Reproduction is an essential life process for continuity of race or species. Mating strategies are therefore evolved diversely in different species. Reproductive behaviors in fruit fly, Drosophila, has been studied extensively for many years. While most studies have focused on male courtship behavior, female mating decisions remain poorly understood. Female fruit flies in Zimbabwe have unique mating preferences that they generally mate with males of the same strain and are unwilling to accept courtships from males of other strains. This model could potentially provide an opportunity for exploring factors involved in female's mating decisions. In this study, we verified the Z female preference and compared the transcriptome in the brains of females exposed to different males. Gene expression analyses from RNA-seq identified and clustered several candidate genes potentially related to female mating decisions. Unexpectedly, neither quantitative PCR nor knockdown experiment is able to confirm the function of candidates. Although our strategies failed to reveal any candidate gene with a significant impact on mating, we believe that the project provides valuable information for future research on female mating preferences.

    Acknowledgments i Abstract ii 摘要 iii Contents iv List of figures vi List of tables viii Chapter 1 Introduction 1 Chapter 2 Materials and methods 5 2.1 Fly stocks and preparation 5 2.2 Mating choice experiment 7 2.3 Ribonucleic acid extraction 10 2.4 Ribonucleic acid sequencing and analysis 13 2.5 Reverse transcription-polymerase chain reaction (cDNA synthesis) 14 2.6 Real-time polymerase chain reaction 15 Chapter 3 Results 20 3.1 Females generally prefer males in near regions and can respond to courtship in short period 20 3.2 Z females show strong mating selectivity for males and that phenomenon is independent of males’ strains 30 3.3 RNA-seq shows that most genes are not directly related to female mating desire 34 3.4 HPs and LPs fail to achieve consistent results at gene expression levels 44 3.5 Mating behavior with specific gene knockdown 46 Chapter 4 Discussion 48 4.1 Female mating preference 48 4.2 The distribution of mating time 50 4.3 Gene screening and functional clustering 51 4.4 Experimental corrections and future work 53 4.5 Conclusion 55 Reference 56

    Andersson, M. B. (1994). Sexual selection, Princeton University Press.

    Bolger, A. M., et al. (2014). "Trimmomatic: a flexible trimmer for Illumina sequence data." 30(15): 2114-2120.

    Chapman, T., et al. (2003). "The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference." 100(17): 9923-9928.

    Dickson, B. J. J. S. (2008). "Wired for sex: the neurobiology of Drosophila mating decisions." 322(5903): 904-909.

    Ekengren, S., et al. (2001). "A family of Turandot-related genes in the humoral stress response of Drosophila." 284(4): 998-1003.

    Feng, K., et al. (2014). "Ascending SAG neurons control sexual receptivity of Drosophila females." 83(1): 135-148.

    Fisher, R. A. J. T. E. R. (1915). "The evolution of sexual preference." 7(3): 184.

    FlyBase Curators, S. P. P. M., InterPro Project Members (2004). "Gene Ontology annotation in FlyBase through association of InterPro records with GO terms."

    Fuller, R. C., et al. (2005). "Sensory bias as an explanation for the evolution of mate preferences." 166(4): 437-446.

    Gaudet, P., et al. (2010). "Gene Ontology annotation inferences using phylogenetic trees."

    Gordon, M. D., et al. (2008). "Pathogenesis of listeria-infected Drosophila wntD mutants is associated with elevated levels of the novel immunity gene edin." 4(7): e1000111.

    Grafen, A. J. J. o. t. b. (1990). "Biological signals as handicaps." 144(4): 517-546.

    Huang, X., et al. (2007). "Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease." 134(20): 3733-3742.

    Izumi, Y., et al. (2012). "A novel protein complex, Mesh–Ssk, is required for septate junction formation in the Drosophila midgut." 125(20): 4923-4933.

    Karouzou, M. V., et al. (2007). "Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences." 37(8): 754-760.

    Kim, D., et al. (2015). "HISAT: a fast spliced aligner with low memory requirements." 12(4): 357.

    Kirkpatrick, M. J. E. (1982). "Sexual selection and the evolution of female choice." 36(1): 1-12.

    Lai, E. C., et al. (2000). "The enhancer of split complex of Drosophila includes four Notch-regulated members of the bearded gene family." 127(16): 3441-3455.

    Lamiable, O., et al. (2016). "Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila." 113(3): 698-703.

    Levashina, E. A., et al. (1995). "Metchnikowin, a novel immune‐inducible proline‐rich peptide from Drosophila with antibacterial and antifungal properties." 233(2): 694-700.

    Li, H. and R. J. b. Durbin (2009). "Fast and accurate short read alignment with Burrows–Wheeler transform." 25(14): 1754-1760.

    Liu, H. and E. J. P. o. t. N. A. o. S. Kubli (2003). "Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster." 100(17): 9929-9933.

    Mackay, T. F., et al. (2005). "Genetics and genomics of Drosophila mating behavior."
    102(suppl 1): 6622-6629.

    Manning, A. J. A. B. (1967). "The control of sexual receptivity in female Drosophila." 15(2-3): 239-250.

    O'Connell, P. and M. J. N. A. R. Rosbash (1984). "Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene." 12(13): 5495-5513.

    Qazi, M. C. B., et al. (2003). "The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster." 256(2): 195-211.

    Qiu, Y., et al. (2012). "An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis." 109(37): 14858-14863.

    Schreiber, M. C., et al. (1997). "A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins." 191(2): 135-141.

    Smith, J. M. J. J. o. g. (1956). "Fertility, mating behaviour and sexual selection inDrosophila subobscura." 54(2): 261.

    Spieth, H. T. J. A. r. o. e. (1974). "Courtship behavior in Drosophila." 19(1): 385-405.

    Tarazona, S., et al. (2015). "Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package." 43(21): e140-e140.

    Verleyen, P., et al. (2006). "Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS." 52(4): 379-388.

    Wagner, C., et al. (2009). "Infection induces a survival program and local remodeling in the airway epithelium of the fly." 23(7): 2045-2054.

    Wigby, S. and T. J. C. B. Chapman (2005). "Sex peptide causes mating costs in female Drosophila melanogaster." 15(4): 316-321.

    Wu, C.-I., et al. (1995). "Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation." 92(7): 2519-2523.

    Zahavi, A. J. J. o. t. B. (1975). "Mate selection—a selection for a handicap." 53(1): 205-214.

    Zhu, Q., et al. (2008). "Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum." 38(4): 467-477.

    QR CODE