簡易檢索 / 詳目顯示

研究生: 黃信華
Xin-Hua Huang
論文名稱: 高度分枝樹枝狀合物之矽晶圓表面自組裝研究
The Investigation of Hyperbranch Dendrimer Self-Assembling on Silicon Wafer
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 高度分叉樹枝狀聚合物矽晶片自組裝抗酸性抗鹼性抗熱性抗有機性
外文關鍵詞: Hyperbranch Dendrimer, Silicon Wafer, Self-Assembling, AEEA, G1, G3, PAMAM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poly(amidoamine) Dendrimer大約在1984年由D. A. Tomalia等人所發現的一種新型的聚合物 , 它具有單一分子量分佈(monodispersity)、具多孔性的內部、高溶解度、低黏度及結構設計多樣化等優點 , 這對於醫藥、生物科技、光學等領域而言都有很大的潛力 , 因此近10年來很受到科學家的重視。
    本篇論文的研究重點在於將dendrimer長在矽基材上後 , 觀察dendrimer相對於各種環境條件所產生的變化 ; 探討以不同溫度加熱、浸泡於不同濃度的酸鹼溶液及不同種類的有機溶劑中 , 來觀察dendrimer物理及化學性質的改變 ; 由於自組裝在矽基材上的dendrimer無法以電子顯微鏡或是現行的各種儀器直接觀察 , 因此研究的方法是藉由奈米金粒子會和胺基相結合的原理 , 間接地來觀察dendrimer在各種環境條件下的變化 , 並以此作為將來發展實驗晶片的基礎。


    The poly(amidoamine) dendrimer is a new type polymer which discovered by D. A. Tomalia et al. in 1984. The dendrimer has attracted scientist’s attention for the past decades. It possesses some important advantages, like monodispersity, porosity, high aqueous resolution, low viscosity, variety of structure design, and has a number of potential applications for medical science, biotechnology and optics science yet.
    The key points of investigation are to study the chemical change of dendrimer under various conditions. The physical and chemical properties are investigated for the different heating temperature, immersing in the different concentration of acid and basic solution, as well as in the various kinds of organic solvent. Since the morphology of dendrimer self-assembling on the silicon wafer can not be directly observed by electronic microscopy or by current instrument, the developed method of research is to indirectly observe the density changes by way of gold nanoparticle binding with amine functional groups on the substrate under the kinds of conditions, different heating temperature, immersing in the different concentration of acid and basic solution. The study can as also used ad the basis of developing lab-on-chip (LOC).

    摘要…………………………………………………………...……………………. Ⅱ 目錄………………………………………………...…………………….Ⅳ 圖表目錄………………………………………………...………………... Ⅵ 第一章 緒論……………………………………………...………...………1 1.1 Polymers的歷史延革………………...…………..……………………...………...2 1.2 Dendrimers的歷史…….…..………………………………………...…………….3 1.3 Dendrimers各種用途………………………………………………...……………6 1.3.1 光學上的應用………………………………………………………………7 1.3.2 醫藥上的應用………………………………………………………………7 1.3.3 資訊系統上的應用…………………………………………………………8 1.3.4 化妝品工業上的應用………………………………………………………8 第二章 文獻回顧……………………………………………...………….9 2.1合成奈米粒子之方法………………………………………………..……..9 2.2 Dendrimer………………………….…………………………………..12 2.2.1 Dendrimer的主要結構………………………………………....…..12 2.2.2 Dendrimer的世代數計算…..………………………….…………….16 2.2.3 Dendrimer的各種物理性質…….……………………………………17 2.3合成Dendrimer的方法…………….……...………………………………………….22 2.3.1以NH3為核心…..…….……………………………………………………22 2.3.2以Fe3O4為基材…………………………………………………………….24 第三章 Dendrimer 的合成及實驗方法……………………………………...26 3.1實驗藥品與儀器……………………………………………….............26 3.2 Dendrimer 的合成……………………………………………………27 3.3實驗步驟………………………………………………………………31 3.3.1 AEEA抗各種環境條件的能力………………………………..…………..31 3.3.2 Dendrimer-G1抗各種環境條件的能力…………………………………31 3.3.3 Dendrimer-G3抗各種環境條件的能力……………………………….....32 第四章 結果與討論……………………………………………………...35 4.1 AEEA的各種性質…………………………………………………………….....35 4.1.1 抗熱性……………………………………………………………………35 4.1.2 抗酸性……………………………………………………………………..38 4.1.3 抗鹼性……………………………………………………………………..39 4.2 Dendrimer-G1的各種性質………………………………………………………41 4.2.1由TDS-APIMS來證明G1的成長……………………………………….41 4.2.2 抗熱性……………………………………………………………………..44 4.2.3 抗酸性……………………………………………………………………..48 4.2.4 抗鹼性……………………………………………………………………..51 4.3 Dendrimer-G3的各種性質……………………………………………………....52 4.3.1 以TDS-APIMS來證明G3的成長………………………………….......52 4.3.2 抗熱性……………………………………………………………………..57 4.3.3 抗酸性……………………………………………………………………..60 4.3.4 抗鹼性……………………………………………………………………..65 4.3.5 加入Tris-HCl後dendrimer的變化…………………………………….…68 4.3.6 抗有機性…………………………………………………………………..69 第五章 結論………………………………………………………………………..74 參考文獻……………………………………………………………………………76 圖表目錄 圖1-1:巨型分子主要的結構類型…………………………………………………….2 圖1-2:自然界中高度分枝的分子結構…………….…………………………………4 圖1-3 : AB2單體進行聚合反應而形成任意高度分枝聚合物………………………4 圖1-4 : semi-controlled dendritic polymer 一系列的反應過程……….…………….5 圖1-5:Dendron和Dendrimer外型的比較圖…………………………………………6 圖2-1:說明製備金屬奈米粒子的方法………………….……………………………9 表2-1濕式化學法介紹………………………………………………………………........10 圖2-2:(a) 利用檸檬酸鈉形成金奈米粒子的過程 (b) 單獨一顆金奈米粒子的保護形式……………………….……………11 圖2-3:4.5世代的poly(amidoamine) (PAMAM) dendrimer核-殼(core-shell)結構的三維圖形……………………………………………………………………12 圖2-4:發散式合成Dendrimer及收斂式合成Dendrimer的理想流程圖……..........14 圖2-5:發散式合成的概念圖…………………………………………………...……15 圖2-6:收斂式合成的概念圖……….…..…………………………………………....16 圖2-7:世數計算法…………………………………………………………………...16 圖2-8:各種聚合物的黏度比較圖………...…………………………………………17 表2-2 Polyether dendrimer的密度變化……………………………………………..18 圖2-9:Polyether dendrimer的世代數V.S.密度所做的曲線圖………………...……19 圖2-10:為非對稱型分枝聚合物…………..….……………………………………..19 圖2-11:為對稱型分枝球狀聚合物…………..….…………………………………..19 圖2-12:Dendrimer折射率及單位官能基所佔表面積……………………………...20 圖2-13:G8-Dendrimer在不同的離子強度及pH值下的半徑變化…………...……21 圖2-14:球型Dendrimer的合成流程圖………………...……………………………22 圖2-15:環胺化的反應圖(一)………………………………………………………23 圖2-16:環胺化反應圖(二)………………………………………………………......24 圖2-17:將dendrimer長在磁性奈米粒子後的示意圖………………………………25 圖3-1:由矽晶片合成到G1 dendrimer的流程圖……………………………….......29 圖4-1:AEEA加熱後的金粒子密度統計…...………………….……………………35 圖4-2: AEEA加熱後的SEM金粒子分佈…………………………………………..36 圖4-3以熱重分析儀分析AEEA的分解溫度………………………………………37 圖4-4: AEEA泡酸後的金粒子密度統計…………………………………………...38 圖4-5: AEEA泡酸後的SEM金粒子分佈……….………………………………….39 圖4-6:AEEA silane compound合成至矽晶圓上的過程……………………………40 圖4-7: AEEA泡鹼後的SEM金粒子分佈……………………………..……………40 圖4-8: AEEA泡鹼後的金粒子密度統計…………………………………………...41 圖4-9:TDS-APIMS分析的分子量分別為72AMU及86AMU………………….....42 圖4-10:TDS-APIMS分析的分子量分別為114AMU及186AMU……………….43 圖4-11: G1加熱後的金粒子密度統計……..……………………………………….45 圖4-12:G1加熱後的SEM金粒子分佈…………….……………………………..46 圖4-13: Dendrimer在不同pH值下的形態…………………………………………47 圖4-14:G1泡酸後的金粒子密度統計………………………………………………49 圖4-15:G1泡酸後的SEM金粒子分佈…………………………………………..…50 圖4-16:肽鍵的水解過程…………………………………………………………….50 圖4-17:G1泡鹼後的金粒子密度統計……...……………………………………….51 圖4-18:G1泡鹼後的SEM金粒子分佈………..……………………………………52 圖4-19:G3-dendrimer進行retro-Michael addition的流程及其可能會分解出來的 產物…………………………………………………………………………53 圖4-20:TDS-APIMS分析的分子量為72AMU…………………………………......54 圖4-21:TDS-APIMS分析的分子量為86AMU及114AMU……………………….55 圖4-22:TDS-APIMS分析的分子量為186AMU及228AMU……………………...56 圖4-23:G3加熱後的金粒子密度統計………………………………………..……..57 圖4-24:金粒子密度統計,不同世代的dendrimer對於金粒子的吸附能力………...58 圖4-25: 金粒子密度統計, 將G3-dendrimer在140℃下以不同的時間加熱 , 去比較dendrimer被破壞的程度…………………………………………58 圖4-26:G3加熱後的SEM金粒子分佈……………………………………………..59 圖4-27:G3泡過酸後以水沖洗及不沖水的金粒子密度統計………………………61 圖4-28:G3泡酸後沖水及不沖水的SEM金粒子分佈…………………..…………62 圖4-29:以球型dendrimer泡過0.01N及0.1N的鹽酸後 , 量測FT-IR………….63 圖4-30:以球型dendrimer泡過1.0N及5.0N的鹽酸後 , 量測FT-IR……………..64 圖4-31:G3泡鹼後的金粒子密度統計………………………………………………65 圖4-32:G3泡過0.01N的NaOH後以P-10去掃描………………………………….66 圖4-33:G3泡過0. 1N的NaOH後以P-10去掃描………….……………………….66 圖4-34:G3泡過1.0N的NaOH後以P-10去掃描…………….…….……………….67 圖4-35:G3泡過5.0N的NaOH後以P-10去掃描……………………………..…….67 圖4-36:比較泡過Tris-HCl及未泡過Tris-HCl的G3對於金粒子的吸附密度……68 圖4-37:將dendrimer泡過各種有機溶劑之後比較金粒子吸附密度統計…………69 圖4-38:將球型dendrimer分別泡於二氯甲烷和三氯甲烷中30分鐘 , 再以真空 幫浦將其乾燥 , 之後以FT-IR分析…………………………..…………70 圖4-39:將球型dendrimer分別泡於丙酮和環己烷中30分鐘 , 再以真空幫浦將 其乾燥 , 之後以FT-IR分析………………………………………………71 圖4-40 將球型dendrimer分別泡於THF和甲苯中30分鐘 , 再以真空幫浦將 其乾燥 , 之後以FT-IR分析………………………………………………72 圖4-41 G3抗有機性的SEM金粒子分佈…………………………………………..73

    參考文獻

    1. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.xxxvi, Great Britain(2001)
    2. Elias, H.-G. Mega Molecules, Springer-Verlag, Berlin. (1987).
    3. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.8, Great Britain(2001)
    4. http://inventors.about.com/library/inventors/blpolystyrene.htm
    5. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001)
    6. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001)
    7. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001)
    8. Z. Guan, P. M. Cotts, E. F. McCord, S. J. McLain, Science, 283, 2059(1999)
    9. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.10, Great Britain(2001)
    10. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.10, Great Britain(2001)
    11. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.14-16, Great Britain(2001)
    12. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.16, Great Britain(2001)
    13. Gauthier, M. and Moller, “Uniform highly branched polymers by anionic grafting: arborescent graft polymers”, Macromolecules, 24, 4548(1991)
    14. Tomalia, D. A., Hedstrand, D. M. and Ferrito, M. S. “Comb-Burst Dendrimer Topology. New Macromolecular Architecture Derived from Dendritic Grafting”, Macromolecules, 24, 1435(1991)
    15. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.15, Great Britain(2001)
    16. http://www.c-science.com/txt/tc/te/em/980129teem.htm
    17. http://www.newton.com.tw/e-paper/epaper65.htm
    18. http://www.qsl.net/vr2xbp/nano/nanotech-07.html
    19. http://www.google.com.tw/search?q=cache:G2h_IUcUMgYJ:www.st-pioneer.org.tw/%E5%85%A7%E6%96%87%E9%A0%81/it018/p15.html+dendrimer&hl=zh-TW&lr=lang_zh-TW&ie=big5&inlang=zh-TW
    20. http://www.st-pioneer.org.tw/modules.php?name=magazine&pa=showpage&tid=319
    21. N. Toshima, T. Yonezawa, “Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Application” , New J. Chem., 22, 1179(1998)
    22. 張育誠, “研究微波加熱技術在奈米材料之合成、自組裝及分解機構”, 國 立清華大學碩士論文, 2003
    23. M. T. Reetz, W. Helbig, S. A.Quaiser, “Electrochemical Preparation of Nanostructural Bimetallic Clusters” , Chem.Mater., 7, 2227(1995)
    24. 王鉦源,“以化學還原法製備奈米級銀鈀微粉”,國立成功大學碩士論文 , 2002
    25. F. Kim, J. H. Song, P. Yang, “Photochemical Synthesis of Gold Nanorods” , J. Am. Chem. Soc., 124, 14316(2002)
    26. M. Y. Han, C. H. Quek, “Photochemical Synthesis in Formamide and Room- Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles”, Langmuir., 16, 362(2000)
    27. L. Rivas, S. S. Cortes, J. V. G. Ramos, G. Morcillo, “Growth of Silver Colloidal Particles Obtained by Citrate Reduction To Increase the Raman Enhancement Factor” , Langmuir., 17, 574(2001)
    28. S. Link, Z. L. Wang, M. A. E. Sayed, “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition” , J. Phys. Chem. B., 103, 3529(1999)
    29. A. B. R. Mayer, J. E. Mark ,“Poly(2-hydroxyalkyl methacrylates) as Stabilizers for Colloidal Noble Metal Nanoparticles” , Polymer., 41, 1627(2000)
    30. N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, “Catalytic Activity and Structural Analysis of Polymer-Protected Gold-Palladium Bimetallic Clusters Prepared by The Simultaneous Reduction of Hydrogen Tetrachloroaurate and Palladium Dichloride” , J. Phys. Chem., 96, 9927(1992)
    31. http://www.devicelink.com/ivdt/archive/00/03/004.html
    32. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.24, Great Britain(2001)
    33. G. R. Newkome, E. He, C. N. Moorefield, “Suprasupermolecules with Novel properties Metallodendrimers”, Chem. Rev., 99, 1689(1999)
    34. G. R. Newkome, E. He, C. N. Moorefield, “Dendrimers and Dendrons”, WILEY-VCH, p.52, Germany(2001)
    35. G. R. Newkome, E. He, C. N. Moorefield, “Dendrimers and Dendrons”, WILEY-VCH, p.191, Germany(2001)
    36. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.34, Great Britain(2001)
    37. Li Zhou, David H. Russell, Mingqi Zhao, and Richard M. Crooks, “Characterization of Poly(amidoamine) Dendrimers and Their Complexes with Cu2+ by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry”, Macromolecules, 34, 3567(2001)
    38. T. H. Mourey, S. R. Turner, M. Rubinstein, C. J. Hawker, K. L. Wooley, Macromolecule, 25, 2401(1992)
    39. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.35, Great Britain(2001)
    40. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.28, Great Britain(2001)
    41. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.29, Great Britain(2001)
    42. Giovanni Nisato, Robert Ivkov, and Eric J. Amis, “Size Invariance of Polyelectrolyte Dendrimers”, Macromolecules, 33, 4172(2000)
    43. P. Welch, M. Muthukumar, “Tuning the Density Profile of Dendritic Polyelectrolytes”, Macromolecules, 31, 5892(1998)
    44. D. A. Tomalia, H. Baker, J. Dewald, M.Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, “A New Class of Polymers: Starburst-Dendritic Macromolecules”, Polymer Journal, 17, 117(1985)
    45. Brandon Yoza, Atsushi Arakaki, Tadashi Matsunaga, “DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer”, Journal of Biotechnology, 101, 219(2003)
    46. Wei Chen, Donald A. Tomalia, and James L. Thomas, “Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes”, Macromolecules, 33, 9169(2000)
    47. Giovanni Nisato, Robert Ivkov, and Eric J. Amis, “Structure of Charged Dendrimer Solutions As Seen by Small-Angle Neutron Scattering”, Macromolecules, 32, 5895(1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE