研究生: |
田世維 Tien, Shih-Wei |
---|---|
論文名稱: |
製備與評估氟-18芬布芬衍生物4-硼頻那醇甲基[18F]氟芬布芬於正子照影和硼中子捕獲治療之應用 Preparation and biological assessment of 4-boron pinacol methyl [18F] fluorofenbufen for potential application in positron emission tomography and boron neutron capture therapy |
指導教授: |
俞鐘山
Yu, Chung-Shan |
口試委員: |
林俊成
陳仁焜 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 氟十八 、硼中子捕獲治療 、非類固醇抗發炎藥物 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
4-bromobiphenyl經三步合成methyl 4-oxo-4-(4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)butanoate (6),總產率81.6%,經由通入[18F] F2 30分鐘進行放射化學標幟,得到4-硼頻那醇甲基[18F]氟芬布芬 ([18F] FFBpin),放射化學產率為3.3%,比放射活度為12.3 MBq/ μmole,非放射性產率為:16.2%。
利用核磁共振儀及質譜分析FFBpin的結構與前驅物methyl 4-oxo-4-(4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)butanoate (6)比較,前驅物1H-NMR於δ 7.80和δ 7.85訊號在FFBpin的1H-NMR中消失,而生成了δ 7.51, 7.56和7.65三個新的訊號,且19F-NMR於δ -119.07和δ -119.6各出現了一個訊號,以Hesse Meier Zeeh公式計算推測,氟連接於硼原子鄰位與間位的兩種分子均有生成。FFBpin質譜預測值為m/z : 412.1857,低解析質譜的實驗值為:[M+H]+ 413.21,高解析質譜的實驗值為:412.1858。
[18F]FFBpin對COX-1的半結合抑制值為:3.16 μM,對COX-2的半結合抑制值為:11.22 μM;而[18F] fluorocelecoxib對COX-1的半結合抑制值為:12.59 nM,對COX-2的半結合抑制值為:0.13 nM。 [18F] FFBpin對膽管癌細胞的累積情形隨時間遞增,至120分鐘時,累積量從1 %提升至1.5 %。而對纖維母細胞隨時間沒有明顯的變化。
By using 4-bromobiphenyl as starting material, via three steps synthesis, we obtain methyl 4-oxo-4-(4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)butanoate (6) with chemical yield 81.6%. After radio-labeling by [18F] F2, 4-boron pinacol methyl [18F] fluorofenbufen (FFBpin) was prepared with a radiochemical yield 3.3% and the specific activity was 12.3 MBq/ μmole.
To figure out the structure of FFBpin, we compared FFBpin’s NMR and mass spectrometry with precursor’s. The 1H-NMR signal of precursor at δ 7.80 and δ 7.85 disappeared, and three new signals raised at δ 7.51, 7.56 and 7.65. The 19F-NMR showed that there were two signals at δ -119.07 and δ -119.6. Calculated by the Hesse Meier Zeeh equation, we deduced the fluorine atom locating on the ortho and meta site of boron atom.
The result showed that [18F] FFBpin preferentially interacts with COX-1 and the IC50 is 3.16 μM comparing with that of COX-2 in 11.22 μM. [18F] fluorocelecoxib binds COX-2 with IC50 0.13 nM and that of COX-1 with IC50 12.59 nM. Besides, increasing accumulation of [18F] FFBpin from 1% to 1.5% in HuCCT1 was observed during 2 hrs-study, in contradictory to a plain accumulation by fibroblast cell.
1. Husain, A.; Ahmad, A.; Alam, M. M.; Ajmal, M.; Ahuja, P., Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1 -(biphenyl-4-yl) propan-1-ones as safer antiinflammatory and analgesic agents. European Journal of Medicinal Chemistry 2009, 44 (9), 3798-804.
2. Smith, W. L.; Urade, Y.; Jakobsson, P. J., Enzymes of the Cyclooxygenase Pathways of Prostanoid Biosynthesis. Chem Rev 2011, 111 (10), 5821-5865.
3. Liu, J. K.; Patel, S. K.; Gillespie, D. L.; Whang, K.; Couldwell, W. T., R-flurbiprofen, a novel nonsteroidal anti-inflammatory drug, decreases cell proliferation and induces apoptosis in pituitary adenoma cells in vitro. J Neuro-Oncol 2012, 106 (3), 561-569.
4. Johannesdottir, S. A.; Chang, E. T.; Mehnert, F.; Schmidt, M.; Olesen, A. B.; Sorensen, H. T., Nonsteroidal anti-inflammatory drugs and the risk of skin cancer. Cancer-Am Cancer Soc 2012, 118 (19), 4768-4776.
5. Dang, C. T.; Shapiro, C. L.; Hudis, C. A., Potential role of selective COX-2 inhibitors in cancer management. Oncology-Ny 2002, 16 (5), 30-36.
6. Tang, X. M.; Sun, Y. J.; Half, E.; Kuo, M. T.; Sinicrope, F., Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 2002, 62 (17), 4903-4908.
7. Cunha, L.; Szigeti, K.; Mathe, D.; Metello, L. F., The role of molecular imaging in modern drug development. Drug Discov Today 2014, 19 (7), 936-948.
8. Willmann, J. K.; van Bruggen, N.; Dinkelborg, L. M.; Gambhir, S. S., Molecular imaging in drug development. Nat Rev Drug Discov 2008, 7 (7), 591-607.
9. Solon, E. G., Use of Radioactive Compounds and Autoradiography to Determine Drug Tissue Distribution. Chem Res Toxicol 2012, 25 (3), 543-555.
10. Jurisson, S.; Berning, D.; Jia, W.; Ma, D. S., Coordination-Compounds in Nuclear-Medicine. Chem Rev 1993, 93 (3), 1137-1156.
11. Le, V. S., Tc-99m Generator Development: Up-to-Date Tc-99m Recovery Technologies for Increasing the Effectiveness of Mo-99 Utilisation. Sci Technol Nucl Ins 2014.
12. Husain, A.; Ahmad, A.; Alam, M. M.; Ajmal, M.; Ahuja, P., Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur J Med Chem 2009, 44 (9), 3798-3804.
13. Cal-Gonzalez, J.; Herraiz, J. L.; Espana, S.; Desco, M.; Vaquero, J. J.; Udias, J. M., Positron Range Effects in High Resolution 3D PET Imaging. 2009 Ieee Nuclear Science Symposium Conference Record, Vols 1-5 2009, 2788-2791.
14. Ermert, J.; Coenen, H. H., Methods for 11C-and 18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Labelled Compd Rad 2013, 56 (3-4), 225-236.
15. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D., Synthesis of C-11, F-18, O-15, and N-13 Radiolabels for Positron Emission Tomography. Angew Chem Int Edit 2008, 47 (47), 8998-9033.
16. Li, Z. B.; Conti, P. S., Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliver Rev 2010, 62 (11), 1031-1051.
17. Bin Shen, Studies on the Nucleophilic Aromatic 18F-Fluorination, 2008
18. Liu, H. G.; Liu, S. L.; Miao, Z.; Jiang, H.; Deng, Z. X.; Hong, X. C.; Cheng, Z., A Novel Aliphatic F-18-Labeled Probe for PET Imaging of Melanoma. Mol Pharmaceut 2013, 10 (9), 3384-3391.
19. Coenen, H. H.; Franken, K.; Kling, P.; Stocklin, G., Direct Electrophilic Radiofluorination of Phenylalanine, Tyrosine and Dopa. Appl Radiat Isotopes 1988, 39 (12), 1243-1250.
20. Bergman, J.; Solin, O., Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 1997, 24 (7), 677-683.
21. Kilbourn, M. R.; Welch, M. J.; Dence, C. S.; Tewson, T. J.; Saji, H.; Maeda, M., Carrier-Added and No-Carrier-Added Syntheses of [F-18] Spiroperidol and [F-18] Haloperidol. Int J Appl Radiat Is 1984, 35 (7), 591-598.
22. Biava, M.; Porretta, G. C.; Poce, G.; Supino, S.; Forli, S.; Rovini, M.; Cappelli, A.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Vivoli, E.; Makovec, F.; Anzellotti, P.; Patrignani, P.; Anzini, M., Cyclooxygenase-2 inhibitors. 1,5-diarylpyrrol-3-acetic esters with enhanced inhibitory activity toward cyclooxygenase-2 and improved cyclooxygenase-2/cyclooxygenase-1 selectivity. J Med Chem 2007, 50 (22), 5403-5411.
23. Duggan, K. C.; Hermanson, D. J.; Musee, J.; Prusakiewicz, J. J.; Scheib, J. L.; Carter, B. D.; Banerjee, S.; Oates, J. A.; Marnett, L. J., (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol 2011, 7 (11), 803-809.
24. Alhouayek, M.; Muccioli, G. G., COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 2014, 35 (6), 284-292.
25. Woodward, D. F.; Wang, J. W.; Poloso, N. J., Recent Progress in Prostaglandin F-2 alpha Ethanolamide (Prostamide F-2 alpha) Research and Therapeutics. Pharmacol Rev 2013, 65 (4), 1135-1147.
26. Pisarev, M. A.; Dagrosa, M. A.; Juvenal, G. J., Boron neutron capture therapy in cancer: Past, present and future. Arq Bras Endocrinol 2007, 51 (5), 852-856.
27. Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E., Boron neutron capture therapy of cancer: Current status and future prospects. Clin Cancer Res 2005, 11 (11), 3987-4002;
28. Kouri, M.; Kankaanranta, L.; Seppala, T.; Tervo, L.; Rasilainen, M.; Minn, H.; Eskola, I.; Vahatalo, J.; Paetau, A.; Savolainen, S.; Auterinen, I.; Jaaskelainen, J.; Joensuu, H., Undifferentiated sinonasal carcinoma may respond to single-fraction boron neutron capture therapy. Radiother Oncol 2004, 72 (1), 83-85.
29. Lamarsh J.R.; Baratta A.J., Introduction to Nuclear Engineering. Prentice Hall 2001
30. Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G., The chemistry of neutron capture therapy (vol 98, pg 1515, 1998). Chem Rev 1998, 98 (6), 2389-2389.
31. Capoulat, M. E.; Minsky, D. M.; Kreiner, A. J., Computational assessment of deep-seated tumor treatment capability of the Be-9(d,n)B-10 reaction for accelerator-based Boron Neutron Capture Therapy (AB-BNCT). Phys Medica 2014, 30 (2), 133-146.
32. Evangelista, L.; Jori, G.; Martini, D.; Sotti, G., Boron neutron capture therapy and F-18-labelled borophenylalanine positron emission tomography: A critical and clinical overview of the literature. Appl Radiat Isotopes 2013, 74, 91-101.
33. Moss, R. L., Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl Radiat Isotopes 2014, 88, 2-11.
34. Krohn, K. A.; Link, J. M., Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. Nucl Med Biol 2003, 30 (8), 819-826.
35. Chow, W. K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong, F. Y., Carbon-Boron Bond Cross-Coupling Reaction Catalyzed by -PPh2 Containing Palladium-Indolylphosphine Complexes. J Org Chem 2012, 77 (7), 3543-3548.
36. Meyer, F. M.; Collins, J. C.; Borin, B.; Bradow, J.; Liras, S.; Limberakis, C.; Mathiowetz, A. M.; Philippe, L.; Price, D.; Song, K.; James, K., Biaryl-Bridged Macrocyclic Peptides: Conformational Constraint via Carbogenic Fusion of Natural Amino Acid Side Chains. J Org Chem 2012, 77 (7), 3099-3114.
37. Gerbino, D. C.; Mandolesi, S. D.; Schmalz, H. G.; Podesta, J. C., Introduction of Allyl and Prenyl Side-Chains into Aromatic Systems by Suzuki Cross-Coupling Reactions. Eur J Org Chem 2009, (23), 3964-3972.
38. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium(O)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes - a Direct Procedure for Arylboronic Esters. J Org Chem 1995, 60 (23), 7508-7510.
39. Chu, W. H.; Tu, Z.; McElveen, E.; Xu, J. B.; Taylor, M.; Luedtke, R. R.; Mach, R. H., Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D-3 receptor ligands. Bioorgan Med Chem 2005, 13 (1), 77-87.
40. Jin, G. Y.; Lu, D. S.; Yao, S. Y.; Wu, C. C. N.; Liu, J. X.; Carson, D. A.; Cottam, H. B., Amide derivatives of ethacrynic acid: Synthesis and evaluation as antagonists of Wnt/beta-catenin signaling and CLL cell survival. Bioorg Med Chem Lett 2009, 19 (3), 606-609.
41. Ishiwata, K.; Ido, T.; Mejia, A. A.; Ichihashi, M.; Mishima, Y., Synthesis and Radiation-Dosimetry of 4-Borono-2-[F-18]Fluoro-D,L-Phenylalanine - a Target Compound for Pet and Boron Neutron-Capture Therapy. Appl Radiat Isotopes 1991, 42 (4), 325-328.
42. Jewett, D. M.; Potocki, J. F.; Ehrenkaufer, R. E., A Gas Solid-Phase Microchemical Method for the Synthesis of Acetyl Hypofluorite. J Fluorine Chem 1984, 24 (4), 477-484.
43. Imahori, Y.; Ueda, S.; Ohmori, Y.; Kusuki, T.; Ono, K.; Fujii, R.; Ido, T., Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 1998, 39 (2), 325-333.
44. Wang, H. E.; Liao, A. H.; Deng, W. P.; Chang, P. F.; Chen, J. C.; Chen, F. D.; Liu, R. S.; Lee, J. S.; Hwang, J. J., Evaluation of 4-borono-2-F-18-fluoro-L-phenylalanine-fructose as a probe for boron neutron capture therapy in a glioma-bearing rat model. J Nucl Med 2004, 45 (2), 302-308.
45. Davis, F. A.; Han, W.; Murphy, C. K., Selective, Electrophilic Fluorinations Using N-Fluoro-O-Benzenedisulfonimide. J Org Chem 1995, 60 (15), 4730-4737.
46. Robert M. Silverstein, Francis X. Webster, David Kiemle. Spectrometric Identification of Organic Compounds. 2005.
47. Kharasch, E. D.; Thummel, K. E., Identification of Cytochrome-P450 2e1 as the Predominant Enzyme Catalyzing Human Liver Microsomal Defluorination of Sevoflurane, Isoflurane, and Methoxyflurane. Anesthesiology 1993, 79 (4), 795-807.
48. Tipre, D. N.; Zoghbi, S. S.; Liow, J. S.; Green, M. V.; Seidel, J.; Ichise, M.; Innis, R. B.; Pike, V. W., PET imaging of brain 5-HT1A receptors in rat in vivo with F-18-FCWAY and improvement by successful inhibition of radioligand defluorination with miconazole. J Nucl Med 2006, 47 (2), 345-353.
49. Moss, R. L., Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl Radiat Isotopes 2014, 88, 2-11.
50. Vessotskie, J. M.; Kung, M. P.; Chumpradit, S.; Kung, H. F., Quantitative autoradiographic studies of dopamine D-3 receptors in rat cerebellum using [I-125]S(-)5-OH-PIPAT. Brain Res 1997, 778 (1), 89-98.
51. Periasamy, M.; Gurubrahamam, R.; Muthukumaragopal, G. P., Methods for the synthesis of chiral sulfur heterocycles and their application in the asymmetric Baylis-Hillman reactions. Tetrahedron-Asymmetr 2013, 24 (9-10), 568-574.
52. Li, J. J.; Name reactions a collection of detailed reaction mechanisms. Springer, 2003.
53. Spectroscopic Methods in Organic Chemistry, Dudley H. Williams, Ian Fleming, 2007
54. Hood, W. F.; Gierse, J. K.; Isakson, P. C.; Kiefer, J. R.; Kurumbail, R. G.; Seibert, K.; Monahan, J. B., Characterization of celecoxib and valdecoxib binding to cyclooxygenase. Mol Pharmacol 2003, 63 (4), 870-877.
55. Su, Y. H.; Chiang, L. W.; Jeng, K. C.; Huang, H. L.; Chen, J. T.; Lin, W. J.; Huang, C. W.; Yu, C. S., Solution-phase parallel synthesis and screening of anti-tumor activities from fenbufen and ethacrynic acid libraries. Bioorg Med Chem Lett 2011, 21 (5), 1320-1324.
56. Sogbein, O. O.; Pelletier-Galarneau, M.; Schindler, T. H.; Wei, L. H.; Wells, R. G.; Ruddy, T. D., New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease. Biomed Res Int 2014.
57. Huang, H. L.; Yeh, C. N.; Lee, W. Y.; Huang, Y. C.; Chang, K. W.; Lin, K. J.; Tien, S. F.; Su, W. C.; Yang, C. H.; Chen, J. T.; Lin, W. J.; Fan, S. S.; Yu, C. S., [I-123]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013, 34 (13), 3355-3365.
58. Zhang, L.; Jiang, L.; Sun, Q. Y.; Peng, T.; Lou, K. X.; Liu, N. B.; Leng, J., Prostaglandin E-2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol Cell Biochem 2007, 305 (1-2), 19-26.
59. Wei, J. L.; Du, K. J.; Cai, Q. Z.; Ma, L. S.; Jiao, Z. Z.; Tan, J. R.; Xu, Z.; Li, J. X.; Luo, W. J.; Chen, J. Y.; Gao, J. M.; Zhang, D. Y.; Huang, C. S., Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NF kappa B-independent manner. Toxicology 2014, 325, 67-73.