研究生: |
李正宇 Lee, Cheng-Yu |
---|---|
論文名稱: |
HFE-7100在銅微流道中流動沸騰熱傳之實驗研究 Flow Boiling of HFE-7100 in Copper Microchannels |
指導教授: |
潘欽
Pan, Chin |
口試委員: |
李堅雄
楊毓民 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 微流道 、銅製程 、沸騰熱傳 、深寬比 、漸擴 |
外文關鍵詞: | HFE-7100, Heat transfer, Flow boiling, Aspect ratio |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於利用銅質流道建立一套完整的微流道散熱測試與實驗系統,並挑選出擁有低沸點、潛熱值佳與環境傷害小的冷媒HFE-7100為工作流體進行沸騰熱傳實驗。研究內容分別探討在相近水力直徑之下,改變質量通率(G=39、55、78、90、180 kg/m2s)、深寬比(AR=0.83、0.99、1.65、2.47、4.23、6.06)與漸擴設計(等截面積與漸擴角度1°)對於沸騰曲線、熱傳遞係數與臨界熱通率的影響。
在等截面積與漸擴角度1°的銅質微流道在相近水力直徑下進行沸騰熱傳的研究結果顯示,漸擴角度1°之微流道比等截面積流道擁有較高的雙相流穩定度及較高的移熱能力。在單相強制對流區與雙相沸騰區內,壁面熱通率、底面熱通率與熱傳遞係數皆會隨質量通率增加而提升;臨界熱通率則會與質量通率近似於一正比關係。
深寬比的效應對漸擴角度1°的研究結果顯示,深寬比的改變對微流道內的沸騰熱傳具有顯著的影響。在相近的水力直徑與質量通率下、底面臨界熱通率主要受到熱傳面積大小變化的影響,隨著深寬比增加而大幅度提高;壁面臨界熱通率主要受到角落液膜厚度的影響,在深寬比為0.99時有一最大值。
比對成果發現,在相同的水力直徑與質量通率下,漸擴微流道與高深寬比微流道擁有較高的系統散熱能力。本實驗系統利用冷媒HFE-7100於銅質微流道之最高底面臨界熱通率為1136kW/m2,亦即每平方公分可帶走113.6瓦的熱量。
1. http://public.itrs.net/ (International Technology
Roadmap for semiconductor, ITRS)
2. Tullius, J., R. Vajtai, and Y. Bayazitoglu, A Review of
Cooling in Microchannels. Heat
Transfer Engineering, 2010. 99999(1): p. 1-1.
3. Tuckerman, D.B. and R.F.W. Pease, HIGH-PERFORMANCE HEAT SINKING FOR
VLSI. Electron Device Letters, 1981. 2(5): p. 126-129.
4. http://www.3m.com/index.html?change=true (3M Company)
5. http://www51.honeywell.com/honeywell/ (Honeywell Company)
6. Mudawar, I.,Anderson, T.M., ”Optimization of Enhanced Surfaces for High Flux Chip Cooling by Pool Boiling”, J. of Electronic Packaging, Vol. 115, pp. 89-100, 1993.
7. Liu, Z.W., W.W. Lin, and D.J. Lee, Boiling of HFE-7100 on straight pin fin. Experimental Thermal and Fluid Science, 2000. 22(3-4): p. 197-201.
8. Liu, J.W., D.J. Lee, and A. Su, Boiling of methanol and HFE-7100 on heated surface covered with a layer of mesh. International Journal of Heat and Mass Transfer, 2001. 44(1): p. 241-246.
9. El-Genk, M.S. and H. Bostanci, Pool boiling experiments for HFE-7100 dielectric liquid. Thermal Challenges in Next Generation Electronic Systems, 2002: p. 179-186.
10. El-Genk, M.S. and H. Bostanci, Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip. International Journal of Heat and Mass Transfer, 2003. 46(10): p. 1841-1854.
11. El-Genk, M.S. and J.L. Parker, Pool boiling in saturated and subcooled HFE-7100 dielectric fluid from a porous graphite surface. Itherm 2004, Vol 1, 2004: p. 655-662.
12. Tsai, W., Environmental risk assessment of hydrofluoroethers (HFEs). Journal of Hazardous Materials, 2005. 119(1-3): p. 69-78.
13. Lee, J. and I. Mudawar, Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results. International Journal of Heat and Mass Transfer, 2008. 51(17-18): p. 4315-4326.
14. Lee, J. and I. Mudawar, Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 2. Subcooled boiling pressure drop and heat transfer. International Journal of Heat and Mass Transfer, 2008. 51(17-18): p. 4327-4341.
15. Lee, J. and I. Mudawar, Critical heat flux for subcooled flow boiling in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2009. 52(13-14): p. 3341-3352.
16. Yang, K.-S., et al., Heat Transfer and Flow Pattern CharacteristICS for HFE-7100 Within Microchannel Heat Sinks. Heat Transfer Engineering, 2010. 99999(1): p. 1-1.
17. Kandlikar, S., Steinke, M., Tian, S., Campbell, L., "High-speed photographic observation of flow boiling of water in parallel mini-channels", 35th National Heat Transfer Coference, 675-684, 2001
18. Hetsroni, G., A. Mosyak, and Z. Segal, Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels. Ieee Transactions on Components and Packaging Technologies, 2001. 24(1): p. 16-23.
19. Qu, W., Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2004. 47(10-11): p. 2045-2059.
20. Kandlikar, S.G., Heat Transfer Mechanisms During Flow Boiling in Microchannels. Journal of Heat Transfer, 2004. 126(1): p. 8.
21. Steinke, M.E. and S.G. Kandlikar, An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels. Journal of Heat Transfer, 2004. 126(4): p. 518.
22. Kandlikar, S., Nucleation characteristics and stability considerations during flow boiling in microchannels. Experimental thermal and fluid science, 2006. 30(5): p. 441-447.
23. Koşar, A., C.-J. Kuo, and Y. Peles, Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors. Journal of Heat Transfer, 2006. 128(3): p. 251.
24. Lee, H.J., D.Y. Liu, and S.-c. Yao, Flow instability of evaporative micro-channels. International Journal of Heat and Mass Transfer, 2010. 53(9-10): p. 1740-1749.
25. C. T. Lu and C.Pan, Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels Proc. 13th Int. Heat Transfer Conf. (Sydney, Australia, 2006)
26. 周哲民, 對流式漸擴微流道沸騰熱傳散熱技術應用於高效率電子元件之研究, 碩士論文, 國立清華大學, 民國99年
27. Lee, P.C. and C. Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section. Journal of Micromechanics and Microengineering, 2008. 18(2).
28. Choi, C.W., D.I. Yu, and M.H. Kim, Adiabatic two-phase flow in rectangular microchannels with different aspect ratios: Part I - Flow pattern, pressure drop and void fraction. International Journal of Heat and Mass Transfer, 2011. 54(1-3): p. 616-624.
29. Choi, C.W., D.I. Yu, and M.H. Kim, Adiabatic two-phase flow in rectangular microchannels with different aspect ratios: Part II - bubble behaviors and pressure drop in single bubble. International Journal of Heat and Mass Transfer, 2010. 53(23-24): p. 5242-5249.
30. Singh, S.G., et al., Impact of aspect ratio on flow boiling of water in rectangular microchannels. Experimental thermal and fluid science, 2008. 33(1): p. 153-160.
31. Chiu, H.C., et al., The heat transfer characteristics of liquid cooling heatsink containing microchannels. International Journal of Heat and Mass Transfer, 2011. 54(1-3): p. 34-42.
32. Harirchian, T. and S.V. Garimella, The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. International Journal of Multiphase Flow, 2009. 35(10): p. 904-913.
33. Harirchian, T. and S.V. Garimella, Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. International Journal of Multiphase Flow, 2009. 35(4): p. 349-362.
34. Harirchian, T. and S.V. Garimella, Microchannel size effects on local flow boiling heat transfer to a dielectric fluid. International Journal of Heat and Mass Transfer, 2008. 51(15-16): p. 3724-3735.
35. Harirchian, T. and S.V. Garimella, Boiling Heat Transfer and Flow Regimes in Microchannels—A Comprehensive Understanding. Journal of Electronic Packaging, 2011. 133(1): p. 011001.
36. http://wikipedia.tw/
37. Hwang, J.J., F.G. Tseng, and C. Pan, Ethanol-CO2 two-phase flow in diverging and converging microchannels. International Journal of Multiphase Flow, 2005. 31(5): p. 548-570.
38. P.C. Lee, F.G. Tseng, Chin Pan, Bubble dynamics in microchannels. Part I: single microchannel. International Journal of Heat and Mass Transfer, 2004. 47(25): p.5575-5589.
39. Moffat, R.J., "Describing the uncertanties in experimental results", Experimental Thermal and Fluid Science, 1, 3-17, 1988
40. H.Wong, C.J.Radke, S. Morris, The motion of long bubbles in polygonal capillaries. Part 2: Drag, fluid pressure and fluid flow, J. Fluid Mech. 292 (1995) 95–110.
41. Lee, J. and I. Mudawar, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II - heat transfer characteristics. International Journal of Heat and Mass Transfer, 2005. 48(5): p. 941-955.