簡易檢索 / 詳目顯示

研究生: 林暐智
Wei-Chih Lin
論文名稱: 超級電容器交流阻抗分析與燃料電池車之能量管理系統設計
Impedance Analysis of Ultracapacitor and Design of Power Management for Fuel Cell Vehicle
指導教授: 洪哲文
Che-Wun Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 58
中文關鍵詞: 超級電容器燃料電池動力管理系統
外文關鍵詞: ultracapacitor, fuel cell, power management, supercapacitor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為研究與建立超級電容器之系統動態模型,並以超級電容器做為混成燃料電池電動車之輔助動力系統,設計出一套混成動力系統的能量管理策略。
    在超級電容器部份,利用交流阻抗分析實驗,觀察超級電容器在不同頻率與工作電壓下的阻抗變化,建立超級電容器等效電路模型,同時以充放電實驗,比較實驗與模擬的等效電路關係,得到超級電容器之非線性系統參數,對於超級電容器的系統特性,也考慮到超級電容器本身自放電效應,與在不同環境溫度下的影響,使所建立的超級電容器系統動態模型,能更完整地表示出實際的超級電容器工作情形。在燃料電池方面,以熱力學及電化學公式,建立質子交換膜燃料電池(PEMFC)本體與周邊各子系統的模型,分析燃料電池系統工作效率,與受到周邊子系統之反應較慢的系統動態,如溫度因素與空氣壓縮機的動態等,使得整體燃料電池系統反應速度受到限制。整車方面,採用直流無刷馬達做為電動車的動力源。
    能量管理系統策略上,考慮燃料電池系統的反應速度,與燃料電池系統之較高工作效率範圍,配合超級電容器的快速充放電,與具有極高的功率密度等優點,以規則庫控制方法,設計出一套最佳的動力分配策略。最後以ECE40與FTP75之行車型態,模擬並評估,純燃料電池電動車與混成燃料電池電動車之性能表現,並藉由觀察混成燃料電池電動車之各個動力源能量輸出與輸入之間的關係,得知混成燃料電池電動車具有較佳的行駛性能,與能夠提高燃料電池系統整體效率,以及縮短冷車時間等優勢,因此採用混成動力源勢必將大幅提升燃料電池電動車的競爭力。


    摘要 I 致謝 II 目錄 III 圖目錄 V 表目錄 VII 符號列表 VIII 第一章 緒論 1 1.1 引言 1 1.2 研究目的與方法 2 1.3 文獻回顧 3 1.3.1 超級電容器方面 3 1.3.2燃料電池與能量管理部份 4 第二章 超級電容器理論與模型建立 6 2.1 超級電容器簡介 6 2.2 超級電容器原理 8 2.3 交流阻抗分析原理 9 2.4 等效電路 11 2.5 超級電容器交流阻抗實驗 14 2.6 超級電容器充放電實驗 15 2.7 超級電容器動態模型建立 16 第三章 燃料電池車之動態模組 19 3.1質子交換膜燃料電池 19 3.1.1 燃料電池電化學反應電壓 19 3.1.2 活化能過電壓(Activation Overpotential) 20 3.1.1離子濃度過電壓(Concentration Overpotential) 21 3.1.2毆姆過電壓(Ohmic Overpotential) 22 3.1.5 質子交換膜燃料電池組(PEM Fuel Cell Stack) 23 3.2 周邊系統動態 24 3.2.1空氣管理子系統 24 3.2.2 燃料供應子系統 26 3.3 直流無刷馬達 28 3.4 傳動機構與車體系統 29 3.5 駕駛人模式 29 3.6 超級電容器輔助動力系統模組化 30 3.7 能量管理系統控制器設計 31 第四章 結果與討論 34 4.1超級電容器交流阻抗分析 34 4.2超級電容器充放電實驗 36 4.3超級電容器自放電實驗 40 4.4整車模擬 40 4.4.1 ECE40整車模擬結果 40 4.4.2 FTP整車模擬結果 45 第五章 結論與未來工作 52 5.1 結論 52 5.2 未來工作建議 53 參考文獻 54

    [1]Vermillion R. E., “Nonlinearity in high-C capacitors”, Eur. J. Phys.,pp. 173-178, 1998.
    [2]Belhachemi F., Raёl S., Davat B., “A physical based model of power electric double-layer supercapacitors”, Industry Applications Conference, IEEE, Vol. 5, pp. 3069-3076, 2000.
    [3]Spyker R. L., Nelms R. M., “Classical equivalent circuit parameters for a double-layer capacitor”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 3, pp. 829-836 July 2000.
    [4]Buller, S., Karden, E., Kok, D., De Doncker, R.W., “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy”, Industry Applications, IEEE Transactions on Vol. 38, pp. 1622-1626, Nov.-Dec., 2002.
    [5]Kötza R., Hahna M., Gallayb R., “Temperature behavior and impedance fundamentals of supercapacitors”, Journal of Power Sources, Vol. 154, pp. 550-555, 2006.
    [6]Amphlett, J. C., Mann, R. F., Peppiey, B. A., Roberge, P. R., Rodrigues, A., “A Model Predicting Transient Response of Proton Exchange Membrane Fuel Cells,” Journal of Power Source, Vol. 61, pp. 183-188, Jul.-Aug., 1996.
    [7]Sadler, M., Stapleton, A. J., Heath, R. P. G., Jackson, N. S., “Application of Modeling Techniques to the Design and Development of Fuel Cell Vehicle Systems,” SAE 2000 World Congress Detroit, 5-8 Mar., 2001.
    [8]Jay T. P., “Modeling and Control of PEM Fuel Cell Systems and Fuel Processors” Dept. of Mechanical Engineering in the University of Michigan, 2003.
    [9]Rodatz, P., Paganelli, G., Sciarretta, A., etc… “Optimal Power Management of An Experimental Fuel Cell/Supercapacitor -Powered Hybrid Vehicle,” Control Engineering Practice, Vol. 13, pp. 41-53, 2003.
    [10]吳泓緯, “超級電容器於燃料電池車瞬態性能設計,” 清華大學動力機械研究所論文, 2005.
    [11]Shan Y., Choe S. Y., “Modeling and simulation of a PEM fuel cell stack considering temperature effects,” Journal of Power Sources, 2006.
    [12]Marr, C., Li, X., “An Engineering Model of Proton Exchange Membrane Fuel Cell Performance,” A Interdisciplinary Journal of Physical on Engineering Sciences, Vol. 50, pp. 190-200, 1998.
    [13]Ronald, F., John, C. A., Michel, A. I., etc…“Development and Application of A Generalised Steady-State Electrochemical Model of A PEM Fuel Cell,” Journal of power Sources, Vol. 86, pp. 173-180, 2000.
    [14]E. Barsoukov, Impedance Spectroscopy Theory, Experiment, and Applications, 2ed, John Wiley, 2005.
    [15]B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 1999.
    [16]Kötz R., Carlen M., Electrochimica Acta, Vol. 45, pp. 2483-2498, 2000.
    [17]Blomen, L. J. M. J., Mugerwa, M. N., “Fuel Cell Systems,” Plenum Press, 1993.
    [18]Rongzhong, J., Deryn, C., “Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack,” International Journal of Hydrogen Energy, Vol. 24, pp. 1107-1115, 1999.
    [19]Askri, F., Jemni, A., Nasrallah, S.B., “Prediction of Transient Heat and Mass Transfer in A Closed Metal-Hydrogen Reactor,” International Journal of Hydrogen Energy Vol. 29, pp. 195-208, 2004.
    [20]Pandolfo A. G., Hollenkamp A. F., “Carbon properties and their role in supercapacitors”, Journal of Power sources, Vol. 157, pp. 11-27, 2006.
    [21]http://www.maxwell.com/ultracapacitors/index.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE