研究生: |
王鈺潔 YU-CHIEH WANG |
---|---|
論文名稱: |
利用共振腔量測多壁奈米碳管之介電常數 Dielectric Constants of Multi-wall Carbon Nanotubes from Low Frequency to Microwave Frequency |
指導教授: |
呂助增
JUN-TZENG LUE |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 共振腔 、奈米碳管 、介電常數 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介電常數是描敘材料性質的一個重要的物理參數,本實驗主要是在量測多壁奈米碳管(multi-walled carbon nanotube, MWCNT)從低頻至微波頻段的介電常數,實驗中是利用微波共振腔的方式來量測其介電常數,介電質樣品中除了多壁奈米碳管,還加入氧化鋁及石蠟;因為氧化鋁為高介電常數、低損耗之物質,可避免電磁波被多壁奈米碳管損耗殆盡,而石蠟可去除樣品中之水氣及空氣,使樣品無其他雜質。
利用基本的Maxwell方程式及高頻電磁模擬軟體HFSS加以分析,我們設計一個可調式共振腔,調變其探針可達耦和最佳化且共振腔內共振模態的電磁場分佈情形為TM010模態。將混合物樣品放入微波共振腔內,使用網路分析儀來量測共振模態以及共振頻率,再藉由電磁理論的分析、微波電路的公式,及數學運算軟體Mathematica的輔助計算,可以得到多壁奈米碳管的介電常數。
[1] Y. Kobayashi, M. Katoh, “Microwave measurement of dielectric properties of
low-loss materials by the dielectric rod resonator method”, IEEE Trans. Microwave
Theory Tech., Vol. MTT-33, pp.586~589, July (1985)
[2] B. W. Hakki, P. D. Coleman, “A dielectric resonator method of measuring inductive
capacities in the millimeter range”, IEEE Trans. Microwave Theory Tech., Vol.
MTT-8, pp.402~410, July (1960)
[3] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex
permittivity and permeability of microwave insulators”, IEEE Trans. Microwave
Theory Tech., Vol. MTT-18, pp.476~485, Aug (1970)
[4] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and
R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer
walls”, Nature, 363, pp.605~607, (1993)
[5] S. Iijiama, Nature, 354, 56 (1991)
[6] Sumio Iijima, Toshinari Ichihashi and Yoshinori Ando, Pentagons, Nature, 356,
776 (1992)
[7] L. Chico, Vincent H. Crespi, Lorin X. Benedict, Steven G. Louie and Marvin L.
Cohen, Phys. Rev. Lett., 76, 971 (1996)
[8] F. Robert, Science, 271, 1232 (1996)
[9] Kazuyoshi Tanaka, et al., The Science and Technology of Carbon Nanotubes,
(Elsevier, NY, 1999), Chap 5.
[10]張立德,奈米材料,(五南圖書出版公司,2002).
[11] Ray H. Baughman et al., Science, 297, 787 (2002).
[12] R. Saito, Physical Properties of Carbon Nanotubes, (Imperial College Press,
Lodon, 1998), Chap 4.
[13] N. Hamada, S. I. Sawada, and A. Oshiyama, Phys. Rev. Lett., 68, 1579 (1992)
[14] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys., 73, 494 (1993)
111
[15] J. C. Charlier, and J. P. Michenaud, Phys. Rev. Lett., 70, 1858 (1993)
[16] R. E. Smally, et al., Chem. Phys. Lett., 243, 49 (1995)
[17] W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton and P. J. F.
Harris, Nature, 377, 687 (1995)
[18] R. Sen, et al., Chem. Phys. Lett., 267, 276 (1997)
[19] 賴耿陽,碳材料化學與工學,1, 95 (2001)
[20] R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, J. Catal., 30, 86
(1973)
[21] A. Oberlin, M. Endo, and T. Koyama, Jap. J. Appl. Phys., 16 (9), 1519 (1997)
[22] R. T. K. Barker, J. R. Alonzo, and J. A. Dumesic, J. Catal., 771, 74 (1982)
[23] W. L. Holstein, and M. Boudart, Rev. Latinoam Ing. Quim. Quim. Apl., 132, 107
(1983)
[24] O. A. Louchev, Y. Sato, and H. Kanda, Appl. Phys. Lett., 80, 2752 (2002)
[25] A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L.
Simpson, Chem. Phys. Lett., 356, 527 (2002)
[26] 王士欣,國立東華大學材料科學與工程研究所碩士論文 (2005)
[27] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P.
Nordlander, D. T. Colbert, and R. E. Smalley, Science, 269, 1550 (1995)
[28] W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995)
emission from an atomic wire”, Science, 269, pp.1550, (1995)
[29] Y. M. Shyu and F. C. N. Hong, Mater. Chem. Phys., 72, 223 (2001)
[30] 楊素華,藍慶忠,科學發展,382, 68 (2004)
[31] 曹佑民,國立臺灣師範大學物理學研究所碩士論文 (2002)
[32] P. G. Collins and P. Avouris, Sci. Amer., 12, 62 (2000)
[33] H. C. Fang, Y. M. Tsau, H. F. Cheng, and I. N. Lin, 奈米科技, 2 (2002)
[34] J. Han, A. Globus, R. Jaffe, and G. Deardorff, Nanotechnology, 8, 95 (1997)
[35] 黃建良, “奈米碳管的潛在用途”, 技術尖兵, 102, p30, (2003)
[36] David M. Pozar, “Microwave Engineering”, third Edition, Wiley, New York
(2005)
[37] David K. Cheng, “Field and Wave Electromagnetics”, 2nd Edition, Addison-Wesley
(1989), CH7, CH9~CH10
[38] 葉彥顯, “量測金屬微顆粒在微波頻段下之介電常數”, 國立清華大學物理
所碩士論文 (2003)
[39] J. H. Liu, C. L. Chen, H. T. Lue and J. T. Lue, “A new method developed in
112
measuring the dielectric constants of metallic nanoparticles by a microwave
double-cavity dielectric resonator”, IEEE Microwave and Wireless Components
Letters, Vol.13, no.5, pp.181~183, (2003)
[34] Y.S. Yeh, J. T. Lue, Z. R. Zheng, “Masurement of the Dielectric Constants of
Metallic Nanoparticles Embeded in a Paraffin Rod at Microwave frequencies”,
IEEE Trans. On Microwave Theory and Techniques, Vol.53, No.5, pp.1756-1760,
(2005)
[41] 林育蔚, “微波頻段下金屬奈米顆粒之介電常數量測”, 國立清華大學物理
所碩士論文 (2005)
[42] J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London, 203, pp.85, (1904);A205,
pp.237, (1906)
[43] D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, pp.636, (1935)
[44] David K. Cheng, “Field and Wave Electromagnetics”, 2nd Edition, Addison-Wesley
(1989), p123
[45] Guanghua Gao, Tahir Cagin, William A. Goddard III, “Energetics, Structure,
Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes
(SWNT)”, The Fifth Foresight Conference on Molecular Nanotechnology, (1997)
[46] 鄭智仁, “量測金屬奈米顆粒在微波頻段下之介電常數”, 國立清華大學物
理所碩士論文 (2004)
[47] David M. Pozar, “Microwave Engineering”, third Edition, Wiley, New York
(2005), p64~66
[48] David M. Pozar, “Microwave Engineering”, third Edition, Wiley, New York
(2005), p174~176