研究生: |
顏 宏 Yen, Hung |
---|---|
論文名稱: |
Cr, Fe, Mo, Si, Ti 添加對機械合金法 製作高性能TiC/20wt.%Ni超硬瓷金之影響 Study the Influences of Adding Cr, Fe, Mo, Si and Ti on High Performance TiC/20wt.%Ni Cermet System by Mechanical Alloying |
指導教授: |
林樹均
Lin, Su-Jien |
口試委員: |
吳振名
Wu, Jhen-Ming 洪健龍 Hong, Jian-Long 李勝隆 Li, Sheng-Long |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 303 |
中文關鍵詞: | 粉末冶金 、液相燒結 、瓷金 、高熵合金 、機械合金 |
外文關鍵詞: | Powder metallurgy, Liquid sintering, Cermet, High entropy alloy, Mechanical alloying |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以 TiC/Ni 超硬瓷金為發展主體,在 Ni 膠結相添加 Cr、Fe、Mo、Si以及Ti 元素,期望能抑制 TiC 粗化,使膠結合金有高硬度以及適當的破裂韌性表現,由二元膠結相探討其添加元素對於TiC/Ni 超硬瓷金之影響,了解各元素其作用後以利後續發展。由於高熵合金的效應,本研究進而將膠結相由低元元素添加提升至高元元素添加,透過元素互相抑制TiC晶粒的成長與其各元素之優點。
首先透過 Thermo-Calc 進行相圖之模擬並分析評估適當燒結溫度,並以機械合金法製備 TiC/ Cr-Fe-Mo-Ni-Si-Ti 超硬瓷金粉末,再使用水平爐管,在適當的燒結溫度與真空環境下,進行液相燒結製成TiC/ Cr-Fe-Mo-Ni-Si-Ti 超硬瓷金。
本實驗成功製備出TiC/ Cr-Fe-Mo-Ni-Si-Ti超硬瓷金,性能最佳者為 TiC/20wt%(NiCr0.5Ti0.1) ,其燒結緻密度達 99.4% ,硬度值高達 HV30 2008,破裂韌性仍有 9.6 MPa•m1/2;明顯優於傳統液相燒結 TiC/Ni 超硬瓷金。而此瓷金在擦損磨耗試驗中,有最大的磨耗阻抗24.2 m/mm3,在切削測試中,切削不同基板 FWBW的量測中,都有最小的磨耗量,分別為329.74μm (304SS)及156.11μm (SKD11),本研究所開發出TiC瓷金之機械性質、耐磨耗性質及切削性質皆優於當前的商用瓷金。因此,此研究系統深具刀具及鑽頭的商業應用潛力。
In this study, we use the TiC/Ni cermet as basis compostion and add Cr, Fe, Mo, Si and Ti element in the Ni binder phase, hoping that can cause the inhibition of TiC grain growth and coarsening as well as make the cermet own the high hardness and fracture toughness and know the influence of adding each element in the TiC-based cermet so that we can devolped the mutli-element binder phase cermet. Due to the High-Entropy effect, adding element to form mutli-element binder to ease the grain growth and get better properties of each element in this study.
Firstly, we use the Thermo-Calc TCNI5 database to simulate the phase diagram so that we can know the thermodynamic data of the cermet. Next, using the HEBM method forms the TiC/ Cr-Fe-Mo-Ni-Si-Ti composite powder. Finally, sintering the composite powder on 1380℃ in the vacuum horizontal furnace to get the TiC/ Cr-Fe-Mo-Ni-Si-Ti cermet.
In this study, we have successfully prepared TiC/ Cr-Fe-Mo-Ni-Si-Ti cermet. The best composition is TiC/20wt. %( NiCr0.5Ti0.1) which R.S.D. is 99.4%, hardness is HV30 2008 and fracture tougheness still has 9.6 MPa•m1/2. The maximum wear resistance is 24.2 m / mm3. In the cutting test, the minimum FWBW is 329.74μm (304SS) and 156.11μm (SKD11).The mechanical properties, wear properties and cutting properties are superior to the current commercial cermets.
[1] Zelinski, P., Cermets Get Assertive, in Modern Machine Shop. 2005, Gardner Business Media: Cincinnati.
[2] 黃聖閔, TiC 與 Co1.5CrFeNi1.5Ti0.5 燒結瓷金之製程與機械性質 究, in 國立清華大學材料科學工程研究所碩士論文. 2006.
[3] Lin, C.-M., Tsai, Che-Wei, Huang Sheng-Min, New TiC/Co1.5CrFeNi1.5Ti0.5 Cermet with Slow TiC Coarsening During Sintering. Journal of the Minerals, metals, and Materials Society 2014. 66(10): pp. 2050-2056.
[4] 林岳佑, TiC 與多元金屬燒結瓷金之開發之研究Development of Sintered Cermets of TiC with multi-element metals, in 國立清華大學材料科學工程研究所碩士論文. 2016.
[5] 鄭家沐, TiC 與 Al0.5CoCrCuFeNi 燒結瓷金之製程與機械性質 究, in 國立清華大學材料科學工程研究所碩士論文. 2005.
[6] 曾培原, TiC 與 Co1.5CrFeNi1.5TiNb0.1V0.1 燒結超硬合金之開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2009.
[7] F Cao, D Kraemer, T Sun, Y Lan., Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. Advanced Energy Materials, 2015. 5(2).
[8] JF Henrickson, G Krauss, RN Tauber, Structure and Properties of Sputtered Ta– Al2O3 Cermet Thin Films. Journal of Applied Physics, 1969. 40(13): pp.5006-5014.
[9] Hobosyan, M.A, H.L.Khachatryan, Chemically activated combustion synthesis of MoSi2/Al cermet foams. Chemical Engineering Journal, 2011. 170(1): pp.286-291.
[10] Pierson, H.O., Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps. 1996, Westwood, NJ: William Andrew Publishing, pp. 19-25, 39-76.
[11] Exner, H.E., Physical and chemical nature of cemented carbides.International Metals Reviews, 1979. 24(1): pp. 149-173.
[12] Stevenson, W., Metal handbook. 9 ed. Vol. 7. 1985, Ohio: ASM.
[13] Marques, B.J., C.M. Fernandes, and A.M.R. Senos, Sintering,
microstructure and properties of WC-AISI304 powder composites. Journal of Alloys and Compounds, 2013. 562: pp. 164-170.
[14] Shi, Q., Dongdong,Gu., Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Optics & Laser Technology, 2016. 84: pp. 9-22.
[15] Thévenot, F., Boron carbide—A comprehensive review. Journal of the European Ceramic Society, 1990. 6(4): pp. 205-225.
[16] Basu, B., G.B. Raju, and A.K. Suri, Processing and properties of monolithic TiB2 based materials. International Materials Reviews, 2006. 51(6): pp. 352-374.
[17] Clark, H.K. and J.L. Hoard, The Crystal Structure of Boron Carbide.Journal of the American Chemical Society, 1943. 65(11): pp. 2115-2119.
[18] Zimmermann, J.W., Gregory E. Hilmas, Thermophysical Properties of ZrB2 and ZrB2–SiC Ceramics. Journal of the American Ceramic Society, 2008. 91(5): pp. 1405-1411.
[19] Bača, Ľ., ZoltánLenčéš, Microstructure evolution and tribological properties of TiB2/Ni–Ta cermets. Journal of the European Ceramic Society, 2012. 32(9): pp. 1941-1948.
[20] Li, G. and Z.S. Marta, The TiB2-based Fe-matrix composites fabricated using elemental powders in one step process by means of SHS combined with pseudo-HIP. International Journal of Refractory Metals and Hard Materials, 2014. 45: pp. 141-146.
[21] Zhang, Z.-H., Shen,Xiang-Bo ,Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid.Scripta Materialia, 2012. 66(3–4): pp. 167-170.
[22] Ji, W., Zhang Jin-yong, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. Journal of the European Ceramic Society, 2015.35(3): pp. 879-886.
[23] Wendel, J.A. and W.A. Goddard, The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α‐ and β‐Si3N4. The Journal of Chemical Physics, 1992. 97(7): pp. 5048-5062
[24] Sánchez, J.M., M.Alvarez , Effect of Ni powder characteristics on the consolidation of ultrafine TiMoCN cermets by means of SPS and HIP technologies. Materials Science and Engineering: A, 2009. 500(1–2): pp. 225-232.
[25] Xu, Q., XingAi, Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering. Journal of Alloys and Compounds, 2015. 619: pp. 538-543.
[26] Yang, Q., Jiangao Yang, Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-HIP. International Journal of Refractory Metals and Hard Materials, 2016.
[27] Ettmayer, P. and W. Lengauer, The Story of Cermets. International Journal of Powder Metallurgy, 1989. 21(2): pp. 37-38.
[28] Mills, B., International Conference on Advances in Material and Processing TechnologiesRecent developments in cutting tool materials. Journal of Materials Processing Technology, 1996. 56(1): pp.16-23.
[29] Andrén, H.-O., Microstructures of cemented carbides. Materials & Design, 2001. 22(6): pp. 491-498.
[30] Andrén, H.-O., Microstructure development during sintering and heat-treatment of cemented carbides and cermets. Materials Chemistry and Physics, 2001. 67(1–3): pp. 209-213.
[31] Mills, B., Recent developments in cutting tool materials. Journal of
materials processing technology, 1996. 56(1): pp. 16-23.
[32] Yasinskaya, G.A., The wetting of refractory carbides, borides, and nitrides by molten metals. Soviet Powder Metallurgy and Metal Ceramics, 1966. 5(7): pp. 557-559.
[33] Ettmayer, P. and W. Lengauer, The story of cermets. Powder Metall. Int., 1989. 21(2): pp. 37-38.
[34] Ettmayer, P., H.Kolaska, Ti(C,N) cermets — Metallurgy and properties. International Journal of Refractory Metals and Hard Materials, 1995. 13(6): pp. 343-351.
[35] Exner, H., Physical and chemical nature of cemented carbides.International Materials Reviews, 1979. 4(1): pp. 149-173.
[36] Richter, V. and M.v. Ruthendorf, On hardness and toughness of ultrafine and nanocrystalline hard materials. International Journal of Refractory Metals and Hard Materials, 1999. 17(1–3): pp. 141-152.
[37] Spriggs, G.E., Special Issue on Fine Grained HardmetalsA history of fine grained hardmetal. International Journal of Refractory Metals and Hard Materials, 1995. 13(5): pp. 241-255.
[38] Tracey, V.A., Nickel in hardmetals. International Journal of Refractory Metals and Hard Materials, 1992. 11(3): pp. 137-149.
[39] Rajabi, A., M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – A review. Materials & Design, 2015. 67: pp. 95-106.
[40] Peng, Y., H. Miao, and Z. Peng, Development of TiCN-based cermets: Mechanical properties and wear mechanism. International Journal of Refractory Metals and Hard Materials, 2013. 39: pp. 78-89.
[41] Sun, Z.P. and B.L. Shen, Development of Fe-VC Cermet from Powder by In Situ Reaction Synthesis. Key Engineering Materials, 2010. 431-432: pp. 192-195.
[42] Esteban, P.G. and E. Gordo, Development of Fe–NbC cermet from powder obtained by self-propagating high temperature synthesis. Powder Metallurgy, 2006. 49(2): pp. 153-159.
[43] Sun, S.K., Zhang, Guo-Jun., Reaction Sintering of HfC/W Cermets with High Strength and Toughness. Journal of the American Ceramic Society, 2013. 96(3): pp. 867-872.
[44] Zhang, S.M., Dongying Ju , Fabrication of W-ZrC Cermets by Reactive Melt Infiltration with Polycarbosilane as Preforms' Adhesive. Materials Science Forum, 2011. 675-677: pp. 819-822.
[45] McCandlish, L.E., B.H. Kear, and S.J. Bhatia, Spray conversion process for the production of nanophase composite powders. 1994, Google Patents.
[46] Kim, B., G.H.Ha, Structure and properties of nanophase WC/Co/VC/TaC hardmetal. Nanostructured Materials, 1997. 9(1): pp. 233-236.
[47] Fang, Z.Z., XuWang, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. International Journal of Refractory Metals and Hard Materials, 2009. 27(2): pp. 288-299.
[48] Morton, C.W., D.J. Wills, and K. Stjernberg, The temperature ranges for maximum effectiveness of grain growth inhibitors in WC–Co alloys. International Journal of Refractory Metals and Hard Materials, 2005. 23(4–6): pp. 287-293.
[49] Exner, H.E. and J. Gurland, A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide-cobalt Alloys. Powder Metallurgy, 1970. 13(25): pp. 13-31.
[50] Xiao, P. and B. Derby, Wetting of titanium nitride and titanium carbide by liquid metals. Acta Materialia, 1996. 44(1): pp. 307-314.
[51] Frage, N., N. Froumin, and M.P. Dariel, Wetting of TiC by non-reactive liquid metals. Acta Materialia, 2002. 50(2): pp. 237-245.
[52] Frage, N., N.Froumin, Reactive wetting in titanium carbide/non-reactive metal systems. Current Opinion in Solid State and Materials Science, 2005. 9(4–5): pp. 189-195.
[53] Qu, X.-h., LinZHANG, Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress in Natural Science: Materials International, 2011. 21(3): pp. 189-197.
[54] Onuoha, C.C., ChenxinJin, The effects of TiC grain size and steel binder content on the reciprocating wear behaviour of TiC-316L stainless steel cermets. Wear, 2016. 350–351: pp. 116-129.
[55] Hong, C., DongdongGu, Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Optics & Laser Technology, 2013. 54: pp. 98-109.
[56] Wang, X., XuliangMa, Effects of Y addition on microstructure and mechanical properties of TiC/Ti6Al4V composites. Intermetallics, 2012. 31: pp. 242-248.
[57] Wang, X., MaXuliang, Effect of boron addition on microstructure and mechanical properties of TiC/Ti6Al4V composites. Materials & Design (1980-2015), 2012. 36: pp. 41-46.
[58] Wei, Z.J., Microstructure and mechanical properties of TiC/Ti– 6Al–4V composites processed by in situ casting route. Materials Science and Technology, 2011. 27(8): pp. 1321-1327.
[59] Kim, D.-W., Sung-Hyun Choi, The Ni3Al–Al2O3/TiC cermet formation behavior with TiH2 base ball-milled powders with Ni, Al, and C during spark plasma sintering. Research on Chemical Intermediates, 2010. 36(6): pp. 785-793.
[60] Burkes, D.E., Moore, J.J., Production of Ni3Ti-TiC x intermetallic-ceramic composites employing combustion synthesis reactions. Metallurgical and Materials Transactions A, 2006. 37(3): pp. 1045-1053.
[61] Zhang, L., JicaiFeng, Ag–Cu–Zn alloy for brazing TiC cermet/steel. Materials Letters, 2005. 59(1): pp. 110-113.
[62] Furushima, R., K.Katou, Relationship between hardness and fracture toughness in WC–FeAl composites fabricated by pulse current sintering technique. International Journal of Refractory Metals and Hard Materials, 2014. 42: pp. 42-46.
[63] Furushima, R., K.Katou, Control of WC grain sizes and mechanical properties in WC–FeAl composite fabricated from vacuum sintering technique. International Journal of Refractory Metals and Hard Materials, 2015. 50: pp. 16-22.
[64] Liu, S., Study on rare-earth doped cemented carbides in China. International Journal of Refractory Metals and Hard Materials, 2009. 27(3): pp. 528-534.
[65] Benjamin, J.S., Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1970. 1(10): pp. 2943-2951.
[66] Ermakov, A.E., E.E. Yurchikov, and V.A. Barinov, Phys. Met. Metall., 1981. 52: pp. 50.
[67] Suryanarayana, C., Mechanical alloying and milling. Progress in Materials Science, 2001. 46(1–2): pp. 1-184.
[68] Rahaman, M.N., Ceramic Processing and Sintering. 2003: Taylor & Francis. pp.187-203
[69] Porter, D.A., K.E. Easterling, and M.Y. Sherif, Phase transformations in metals and alloys. 2nd ed. 2009, Boca Raton: CRC Press.
[70] Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: pp. 65-87.
[71] German, R.M., S. Farooq, and C.M. Kipphut, Kinetics of liquid sintering. Materials Science and Engineering: A, 1988. 105: pp. 215-224.
[72] Koch, C.C., Nanostructured Materials: Processing, Properties and Applications. 2006: Elsevier Science.
[73] Hansen, J.D., Richard P. Rusin, Combined-Stage Sintering Model. Journal of the American Ceramic Society, 1992. 75(5): pp. 1129-1135.
[74] Mayo, M.J., Synthesis and applications of nanocrystalline ceramics. Materials & Design, 1993. 14(6): pp. 323-329.
[75] Porat, R., S. Berger, and A. Rosen, Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides. Nanostructured Materials, 1996. 7(4): pp. 429-436.
[76] Kim, H.C., I.J. Shon, and Z.A. Munir, Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating. Journal of Materials Science, 2005. 40(11): pp. 2849-2854.
[77] Kim, H.-C., Dong-Ki Kim, Consolidation of binderless WC–TiC by high frequency induction heating sintering. International Journal of Refractory Metals and Hard Materials, 2008. 26(1): pp. 48-54.
[78] Munir, Z.A., U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 2006. 41(3): pp. 763-777.
[79] Rahaman, M.N., Sintering of Ceramics. 2007: CRC Press.
[80] Onoda, G.Y. and L.L. Hench, Ceramic processing before firing. 1978, New York: John Wiley. pp. 1-7,13-38
[81] Whittemore, J.W., Industrial Use of Plasticizers, Binders and Other Auxiliary Agents. American Ceramic Society Bulletin, 1944. 23: pp. 427-432.
[82] Lewis, J.A., Binder removal from ceramics. Annual Review of Materials Science, 1997. 27(1): pp. 147-173.
[83] Wheeler, J.M. and J. Michler, Invited Article: Indenter materials for high temperature nanoindentation. Review of Scientific Instruments, 2013. 84(10): pp. 101301.
[84] Mortensen, A., Concise Encyclopedia of Composite Materials. 2006: Elsevier Science.
[85] Cobalt, P.H.S. DEPARTMENT of HEALTH AND HUMAN SERVICES, Editor. 2004 Agency for Toxic Substances and Disease Registry
[86] The technical data of Kyocera cutting tool, Kyocera company, 2016.
[87] Schubert,W.,H.Neumeister,Hardness-to-toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): pp. 133-142.
[88] Stevenson, W., Metals Handbook 9th ed. 1985, ASM, Ohio. pp. 16,34,37.
[89] Valery Marinov, Manufacturing Technology: Abir Roy, 2014
[90] Li Chen, Yong Du, Xiang Xiong, et al., "Improved properties of Ti-Al-N coating by multilayer structure," International Journal of Refractory Metals and Hard Materials, 29 (2011) pp.681-685.
[91] C. Subramanian and K. N. Strafford, "Review of Multicomponent and Multilayer Coatings for Tribological Applications," Wear, 165 (1993) pp.85-95.
[92] Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Meth, 2012. 9(7): pp. 671-675.
[93] Baker, H. and H. Okamoto, ASM Handbook, Volume 03 - Alloy Phase Diagrams. ASM International.
[94] Pierson, H.O., Handbook of Refractory Carbides and Nitrides. 1996, Westwood, NJ: William Andrew Publishing.
[95] Ostwald, W., Analytische Chemie. 3rd ed. 1901, Engelmann, Leipzig.
[96] Vengrenovitch, R.D., On the ostwald ripening theory. Acta Metallurgica, 1982. 30(6): pp. 1079-1086.
[97] Chun, D.-I., D.-Y. Kim, and K.-Y. Eun, Microstructural Evolution during the Sintering of TiC–Mo–Ni Cermets. Journal of the American Ceramic Society, 1993. 76(8): pp. 2049-2052.
[98] Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): pp. 258-267.
[99] Elliott, C.M., The Cahn-Hilliard Model for the Kinetics of Phase Separation, in Mathematical Models for Phase Change Problems, J.F. Rodrigues, Editor. 1989, Birkhäuser Basel: Basel. pp. 35-73.
[100] Booker, P.H., A.O. Kunrath, and M.T. Hepworth, Experimental determination of the ternary diagram of the Ti-Cr-C system. Acta Materialia, 1997. 45(4): pp. 1625-1632.
[101] Lim, X.-Z., Metal mixology. Nature, 2016. 533(7603): pp. 306-307.
[102] Schubert, W.D., G.Kinger, Hardness to toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): pp. 133-142.