簡易檢索 / 詳目顯示

研究生: 陳子欣
Chen, Zih-Sin
論文名稱: 利用矽波導的非線性現象結合平面波導光柵在單一晶片上產生多波長的單色光源
On-Chip Multiwavelength Sources Generation Using Nonlinear Silicon Waveguides and Planar Concave Gratings
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 矽波導自相位調變平面波導光柵自由載子效應非線性薛丁格方程
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光通訊系統中,關鍵元件之一就是單色光源。在系統積體化、微小化的趨勢下,單一晶片上使用多波長的單色光源作為訊號傳遞,通常須將多道雷射光源構裝在一起,使得製程複雜同時提高製作成本,此外多雷射構裝也造成元件過熱的問題。
    因此我們提出利用矽波導的非線性現象,如:自相位調變、自由載子色散等產生連續頻譜再配合解多工元件控制輸出頻寬並分成多個單色光的頻道輸出,來解決多波長雷射整合所遇到的瓶頸。
    本論文研究包含了矽波導的非線性理論與模擬,平面凹面光柵(解多工器)的原理與設計,以及元件的製作與量測分析。我們成功的將小尺寸的矽波導與平面凹面光柵整合在同一晶片上,並觀察到在高功率超短脈衝雷射的激發下,矽波導因非線性現象所產生的連續頻譜,由解多工器分成高達15個頻道輸出。此研究成功實現積體化多道單色光源的產生,並展現出其於晶片上脈衝塑形應用的可能性。


    摘要 Abstract 致謝 目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 1.3 論文架構 第二章 矽波導的非線性現象 2.1 自相位調變﹝self-phase modulation﹞ 2.2 矽波導的色散現象 2.2.1降低矽波導色散 2.3 雙光子吸收﹝Two-photon absorption﹞與其影響 2.3.1雙光子吸收﹝two-photon absorption﹞ 2.3.2自由載子影響﹝Free-carrier effects﹞ 第三章 矽波導非線性現象模擬 31 3.1 非線性薛丁格方程式﹝nonlinear Schrödinger equation﹞ 3.2 數值分析 3.3 模擬結果與分析 第四章 反射式凹面光柵原理與設計 4.1 反射型光柵基本原理 4.2 閃耀光柵(Blazed Grating)分光原理 4.3 凹面光柵的特性 4.4 光分波多工光柵元件設計 4.4.1設計步驟 4.4.2凹面光柵光罩繪製 第五章 元件設計與製作流程 5.1 元件結構設計 5.1.1元件主要架構 5.1.2單模波導設計 5.1.3波導色散特性 5.1.4受彎曲波導(bending waveguide)最佳半徑 5.1.5平板波導光柵區 5.2 元件製作流程 5.2.1元件製程說明 第六章 元件量測分析 6.1 矽波導特性量測 6.1.1矽波導傳輸損耗量測 6.1.2矽波導非線性量測 6.2 光分波多工光柵特性量測 6.2.1光分波多工光柵分光量測 6.2.2光分波多工光柵偏振特性 6.3 超連續光譜的產生截和平面波導光柵分光 第七章 結論 附錄(一)模擬程式碼 參考文獻

    [1] Bahram Jalali, Mario Paniccia, and Graham Reed, "Silicon photonics," IEEE microwave magazine, 7(3):58-68, (2006).

    [2] Jalali, B. and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, 24(12): 4600-4615, (2006).

    [3] Lipson, M., "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," Journal of Lightwave Technology, 23(12): 4222-4238,(2005).

    [4] Boyraz, O., Indukuri, T. & Jalali, B " Self-phase-modulation induced spectral broadening in silicon waveguides, " Opt. Express 12, 829-834 (2004).

    [5] Salem, R. et al. "All-optical regeneration on a silicon chip. "Optics Express 15, -7809 (2007).

    [6] Salem, R. et al. " Signal regeneration using low-power four-wave mixing on silicon chip. " Nat Photon 2, 35-38 (2008).

    [7] P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Optical Communication, 1998. 24th European Conference on, 1998, pp. 475-476 vol.1.

    [8] J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, "All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber," Photonics Technology Letters, IEEE, vol. 17, pp. 423-425, (2005).

    [9] L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett., vol. 32, pp. 391-393, (2007).

    [10] P. Koonath, D. R. Solli, and B. Jalali, "Continuum generation and carving on a silicon chip," Applied Physics Letters, vol. 91, pp. 061111-3, (2007).

    [11] Hsieh, I. W. et al. "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. " Opt. Express 15, 1135-1146 (2007).

    [12] Salem, R. et al. "Signal regeneration using low-power four-wave mixing on silicon chip. " Nat Photon 2, 35-38 (2008).

    [13] Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. "Observation of stimulated Raman amplification in silicon waveguides. " Opt. Express 11, 1731-1739 (2003).

    [14] Shang-Da Yang, " Ultrafast Optical " (2009)

    [15] Lin, Q., Painter, O. J. & Agrawal, G. P. "Nonlinear optical phenomena in silicon waveguides: modeling and applications. " Opt. Express 15, 16604-16644 (2007)

    [16] Dekker, R., Usechak, N., Forst, M. & Driessen, A. "Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. " Journal of Physics D-Applied Physics 40, R249-R271, doi:10.1088/0022-3727/40/14/r01 (2007).

    [17] Yin, L. H. & Agrawal, G. P. "Impact of two-photon absorption on self-phase modulation in silicon waveguides. " Optics Letters 32, 2031-2033 (2007).

    [18] Lin, Q., Painter, O. J. & Agrawal, G. P. " Nonlinear optical phenomena in silicon waveguides: modeling and applications. " Opt. Express 15, 16604-16644 (2007).

    [19] Dimitropoulos, D., Jhaveri, R., Claps, R., Woo, J. C. S. & Jalali, B. " Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. " Applied Physics Letters 86, doi:10.1063/1.1866635 (2005).

    [20] Tanabe, T. et al. " Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. " Applied Physics Letters 90, doi:10.1063/1.2431767 (2007).

    [21] Tien, E. K., Yuksek, N. S., Qian, F. & Boyraz, O. "Pulse compression and modelocking by using TPA in silicon waveguides. " Optics Express 15, 6500-6506 (2007).

    [22] Soref, R. A. & Bennett, R. R. "Electro optical effects in Silicon. " IEEE Journal of Quanum Electronics 32, 123-129 (1987).

    [23] Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. "Nonlinear optics in photonic nanowires. "Optics Express 16, 1300-1320 (2008)

    [24] Dekker, R., Usechak, N., Forst, M. & Driessen, A. "Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. " Journal of Physics D-Applied Physics 40, R249-R271, doi:10.1088/0022-3727/40/14/r01 (2007).

    [25] Agrawal, G. P. Nonlinear Fiber Optics. (2006).

    [27] Dekker, R. et al. "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55cm femtosecond pulses. " Opt. Express 14, 8336-8346 (2006).

    [28] Xu, Q., Almeida, V. & Lipson, M. "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. " Opt. Express 12, 4437-4442 (2004).

    [29] Salem, R. et al. All-optical regeneration on a silicon chip. Optics Express 15, 7802-7809 (2007)

    [30] 王以撒,光波導多工器中凹面梯型光柵之研究,國立中央大學 光電科學研究所(2002)

    [31] J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," Journal of Lightwave Technology, vol. 25, pp. 1269-1275, May (2007)

    [32] Dipak Chowdhury, Member, IEEE, "Design of Low-Loss and Polarization -Insensitive Reflection Grating-Based Planar Demultiplexers, " IEEE Journal of
    Selected topics in quantum electronics, VOL. 6, NO. 2, MARCH/APRIL (2000)

    [33] Haisheng Rong1, R et al, "A continuous-wave Raman silicon laser"nature 03346 January (2005).

    [34] Robert Halir,et al, "A Design Procedure for High-Performance, Rib-Waveguide-
    Based Multimode Interference Couplers in Silicon-on-Insulator,"IEEE Journal of lightwave technology,VOL.26,NO. 16,AUGUST (2008)

    [35] 王勝聰, 可調式高分子光波導光學衰減器之設計與製作, 國立交通大學 光電 工程所(2002).

    [36] Chen Yuanyuan, et al,Structural Optimizations of SOI-based Single-mode Rib Waveguide Bends,IEEE (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE