簡易檢索 / 詳目顯示

研究生: 黃文昌
Huang, Wen-Chang
論文名稱: 微波加速碳纖維氧化反應之研究
Study on Microwave-Accelerated Carbon Fiber Oxidation Reaction
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 趙賢文
Chao, Hsien-Wen
蔡哲瑋
Tsai, Che-Wei
許博淵
Shew, Bor-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 78
中文關鍵詞: 聚丙烯睛碳纖維微波碳化矽介電常數
外文關鍵詞: PAN, Carbon Fiber, Microwave, SiC, Dielectric Constant
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計新的腔體,使用準行波式腔體用SiC輔助微波來加熱碳纖維的前驅物-聚丙烯腈(PAN),藉此來提高氧化PAN絲的產量。1.這個新型腔體,製程時間是先前1/10。對於氧化PAN絲,傳統程序需要120分鐘才能將1cm的PAN絲氧化,但這種新腔能能用13分鐘便能將1cm的PAN氧化完全2.和第一代腔體相比產量更多,且設計上更有彈性能做成並排來處理氧化。在這項實驗中,加熱過程分為兩個步驟,以避免在急劇的結構轉變過程中纖維斷裂。
    第一步,使用2.45GHz微波源,功率為148W,盡可能加熱光纖但避免斷裂,加熱過程為8分鐘。第二步,我們使用幾種功率,加熱時間為5分鐘。 最後,將我們做的纖維與廠商氧化絲進行比較,測量纖維的密度,然後通過高頻結構模擬軟體(HFSS)確定介電常數和介電損耗。通過X光粉末繞射儀器(XRD)來驗證結構有轉變有氧化成功,用差示掃描量熱法(DSC)看結構穩定化,用掃描電子顯微鏡(SEM)看表面結構,拉曼光譜發現分析皮芯結構是不是均勻的。


    This study proposed a new cavity that can enhance the yield of oxidation fiber with quasi-traveling microwave-heating. With this new cavity, the yield is 10 times more than previous cavity.
    For oxidation process, the conventional procedure requires 120 mins to transfer 1cm PAN into oxidation, but this new cavity will enhance the yield 13 mins for 1cm PAN. In this study, the heating process is divided into two steps to avoid fiber breakage during the sharp structural transition.
    In the first step, the power of 2.45GHz source is 148W to heat the fiber as possible but avoiding from breakage, and the heating process is 8 mins. In the second, we experiment several powers, and heating times is 5 mins. Finally, the fiber of density was measured, and then permittivity and loss tangent were determined by HFSS (High Frequency Structure Simulator). We will compare our fibers with commercial ones by X-Ray Diffraction (XRD), Differential Scanning Calorimetry(DSC), Scanning Electron Microscopy (SEM) and Raman Spectroscopy(RS).

    目錄 摘要 ii Abstract iii 誌謝 iv 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1前言 1 1.2碳纖維 3 1.2.1碳纖維的介紹和應用 3 1.2.2化學結構的變化 5 1.3研究動機 7 第二章 微波加熱原理 8 2.1 微波熱處理原理 8 2.1.1 微波 8 2.1.2 微波和一般熱處理比較 9 第三章 量測介紹和原理 10 3.1 複數介電常數 10 3.1.1 介電常數介紹 10 3.1.2 共振頻率(Resonance Frequency) 11 3.1.3 品質因子(Quality Factor) 12 3.1.4 介電質的電極化形式 13 3.2量介電常數的方法 17 3.3場強化共振腔微擾法 18 3.4等高線映射圖(Contour Mapping) 19 3.5模擬共振頻率量測的方法 20 3.5.1 量測密度的原理以及方法 20 3.5.2 複合模型(Hybrid Model) 22 3.6量測的原理與介紹 24 3.6.1 兩階段製程 24 3.6.2 X光繞射儀(XRD) 26 3.6.3皮芯結構 28 3.6.4 拉曼散射(Raman Scattering) 31 第四章 實驗架設 32 4.1 實驗步驟 32 4.2準形波式腔體介紹 34 4.2.1腔體電場圖 34 4.2.2腔體熱模擬 35 4.3 TE模式以及截止頻率 36 4.4 SiC在腔體不同位置的影響 39 第五章 實驗結果與分析 40 5.1 微波的溫度分布以及成品 40 5.2密度量測的結果 43 5.3共振頻率與品質因子 45 5.4介電常數以及介電損耗 45 5.5 X光繞射儀(XRD) 47 5.6差示掃描量熱法(DSC) 50 5.7掃描電子顯微鏡(SEM) 52 5.8拉曼光譜(Raman Spectrum) 54 第六章 結論以及未來展望 57 第七章 參考資料 58 附錄A 實驗儀器 69 1.1 紅外線輻射感應器 69 1.2 微波源 69 1.3 循環水冷機 70 1.4功率表(Power Meter) 71 1.5 隔離器 72 1.6 圓盤以及減速箱 73 1.7其他 75 附錄B 校正元件 77

    [1] P. Morgan. Carbon Fibers and Their Composites, 1st ed. CRC Press, Boca Raton, 2005. https://doi.org/10.1201/9781420028744.
    [2] E. Frank, F. Hermanutz, M.R. Buchmeiser, “Carbon fibers: Precursors, manufacturing, and properties ,” Macromol. Mater. Eng., vol. 297, pp. 493–501, Jun. 2012. https://doi.org/10.1002/mame.201100406
    [3] E. Frank et al, “ Carbon Fibers: Precursor Systems, Processing, Structure, and Properties ,”Angew. Chem. Int. Ed., vol. 53, pp. 5262-5298, May. 2014. https://doi.org/10.1002/anie.201306129
    [4] M. S. A. Rahaman, A.F. Ismail, A. Mustafa, “ A review of heat treatment on polyacrylonitrile fiber,” Polym. Degrad. Stab, vol. 92, no. 8, pp. 1421-143, Aug. 2007. https://doi.org/10.1016/j.polymdegradstab.2007.03.023
    [5] H.G. Chae, et al, “ High strength and high modulus carbon fibers ,” Carbon, vol. 93, pp. 81-87, Nov. 2015. https://doi.org/10.1016/j.carbon.2015.05.016.
    [6]Statista.https://www.statista.com/statistics/689198/worldwide-carbon-fiber-demand-by-market/
    [7] A. E. Standage,R. Matkowsky. “ Structure of Oxidized Polyacrylonitrile ,” Nature, vol. 224, pp. 688–689. Nov. 1969, https://doi.org/10.1038/224688a0.
    [8] W. WATT, W. JOHNSON. “ Mechanism of oxidisation of polyacrylonitrile fibres ,” Nature, vol. 257, pp. 210–212, Sep. 1975 https://doi.org/10.1038/257210a0.
    [9] H. Ahn , S. Y. Yeo, and B. S. Lee, “ Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers ,” Polymers, vol. 13, no. 17, p. 2863, Aug. 2021. https://doi.org/10.3390/ polym13172863.
    [10] D. Jang, et al,“Strategies for the production of PAN-Based carbon fibers with high tensile strength ,” Carbon, vol. 186, pp. 644-677 , Jan. 2022. https://doi.org/10.1016/j.carbon.2021.10.061
    [11] D. Choi, H. S. Kil, S. Lee. “ Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies ,” Carbon, vol. 142, pp. 610-649 , Feb. 2019. https://doi.org/10.1016/j.carbon.2018.10.028.
    [12] G. Zhao, J. Liu, L. Xu and S. Guo, “ Comparative study of conventional and microwave heating of polyacrylonitrile-based fibres,”J. Polym. Eng., vol. 41, no. 3, pp.175–183, Feb. 2021. https://doi.org/10.1515/polyeng-2020-0167.
    [13] J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez.“ Microwave heating processes involving carbon materials,”Fuel Process. Technol., vol. 91, pp.1-8, Jan. 2010. https://doi.org/10.1016/j.fuproc.2009.08.021
    [14] W. Xie,, H. Cheng, Z. Chu, Z. Chen, C. Long. “ Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres,” Ceram. Int., vol. 37, no. 6, pp. 1947–1951, Aug. 2011. https://doi.org/10.1080/1536383X.2017.1372751.
    [15] G. Zhao, C. Zhang, L. Lv, J. Liu, S. Guo. “ Research on dynamic microwave low-temperature carbonization of highperformance carbon fiber,”Diam Relat Mater., vol. 125, p. 108989, May. 2022. https://doi.org/10.1016/j.diamond.2022.108989.
    [16] T. H. H. Elagib, E. A. M. Hassan, C. Fan, K. Han, M. Yu,“ Microwave Pre-oxidation for Polyacrylonitrile Precursor Coated with Nano-Carbon Black ,”Polym. Eng. Sci., vol. 59, no. 3, pp.457-464, Nov. 2018. https://onlinelibrary.wiley.com/doi/abs/10.1002/pen.24943.
    [17] H. Chen, et al, “New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: online tracking by two-dimensional correlation FTIR spectroscopy , ” RSC Adv, vol. 7, pp. 54142–54152, 2017. https://doi.org/10.1039/C7RA11548B.
    [18] J. E. Lee , et al, “Microstructural evolution of polyacrylonitrile fibers during industry-mimicking continuous stabilization , ”Carbon, vol. 195, pp. 165-173, Aug. 2022. https://doi.org/10.1016/j.carbon.2022.04.009.
    [19] Yuan Ge, et al, “ The effects of chemical reaction on the microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers , ” J. Mater. Sci., vol. 54, pp. 12592–12604, Jun. 2019. https://doi.org/10.1007/s10853-019-03781-5.
    [20] G. Zhao , et al, “Research on dynamic microwave low-temperature carbonization of high performance carbon fiber , ”Diam Relat Mater., vol. 125, p.108989, May. 2022.
    [21] H. K. Shin, M. Park, H. Y. Kim and S. J. Park. “ An overview of new oxidation methods for polyacrylonitrile based carbon fibers ,” Carbon letters, vol. 16, no. 1, pp.11-18, Jan. 2015. https://doi.org/10.5714/CL.2015.16.1.011.
    [22] T. H. H. Elagib, E. A. M. Hassan, B. Liu,K. Han, M. Yu. “ Evaluation of composite PAN fbers incorporated with carbon nanotubes and titania and their performance during the microwave induced pre oxidation ,” Carbon Lett., vol. 30, pp. 235–245, Jun. 2020. https://doi.org/10.1007/s42823-019-00092-2.
    [23] X. Sun, J. Song, J. Zhang, J. Liu, H. Ke, Q. Wei and Y. Cai. “ Effects of chemical pre-treatment on structure and property of polyacrylonitrile based pre-oxidized fibers ,” J. Eng. Fibers Fabr., vol. 15, pp. 1-8, , Jan. 2020. https://doi.org/10.1177/1558925019898946.
    [24] L. Zhang, Y. Dai, Y. Kai and R. g. Jin, “ Structural evolution and kinetic study of high isotacticity poly(acrylonitrile) during isothermal pre-oxidation ,” Carbon Letters., vol. 12,no. 4, pp. 229-235, Dec. 2011. https://doi.org/10.5714/CL.2011.12.4.229.
    [25] M. Jing, C.G. Wang, B. Zhu, Y. X. Wang, X. P. Gao, W. N. Chen. “ Effects of Preoxidation and Carbonization Technologies on Tensile Strength of PAN-Based Carbon Fiber ,” J. Appl. Polym. Sci., vol. 108, no.2, pp.1259–1264, Jan. 2008. https://doi.org/10.1002/app.27669.
    [26] Bhairav, Bhushan A. et al. “SOLUBILITY AND DISSOLUTION ENHANCEMENT OF PIOGLITAZONE USING SOLID DISPERSION TECHNIQUE.” Int. J. Curr. Pharm. Res.,vol. 9,no. 9,pp. 186-193, Sep. 2017. DOI:10.22159/IJCPR.2017V9I5.22326.
    [27]張存續, “電動力學(一)(二)”國立清華大學物理講義.(2020).
    [28]張存續, “Time-Domain Analysis OF Open Cavities Lecture Note,”國立清華大學物理講義.(2020).
    [29] John D. Jackson,Classical Electrodynamics, 3rd ed.(Wiley. New York, 1998).
    [30] Dielectric properties: why they’re important and how to measure them https://www.electropages.com/blog/2017/06/dielectric-properties-why-they-are-important/
    [31] H. W. Chao and T. H. Chang,“ A modified calibration method for complex permittivity measurement , ” Rev. Sci. Instrum., vol. 84, no.8, p. 084704, Aug. 2013. https://doi.org/10.1063/1.4817635.
    [32] H. W. Chao , W. S. Wong, and T. H. Chang,“ Characterizing the complex permittivity of high-κ dielectrics using enhanced field method , ” Rev. Sci. Instrum., vol. 86, no. 11, p. 114701, Nov. 2015. https://doi.org/10.1063/1.4934810.
    [33] H. W. Chao and T. H. Chang,“ Wide-Range Permittivity Measurement With a Parametric-Dependent Cavity , ” IEEE , vol. 66, no.10, pp. 4641-4648, Oct. 2018, doi: 10.1109/TMTT.2018.2854178.
    [34] H. W. Chao and T. H. Chang,“ Characterization of the lossy dielectric materials using contour mapping , ” Rev. Sci. Instrum., vol. 89, no.11, p. 104705, Aug. 2018. https://doi.org/10.1063/1.5048545.
    [35] H. W. Chao, H. H. Chen and T. H. Chang, “ Measuring the Complex Permittivities of Plastics in Irregular Shapes , ” Polymers, vol.13, no. 16, p.2658, Aug. 2021. https://doi.org/10.3390/ polym13162658.
    [36]陳華選, “不規則材料介電係數的量測與模型建立”國立清華大學物理研究所碩士論文.(2021)
    [37] Y. R. Chen, H. W. Chao, H. C. Hsu, C. H. Chan, W. H. Lin, C. W. Tsai, and T. H. Chang. “ Two-Step Microwave Annealing Process for PAN Pre-Oxidation through a TM-Mode Cavity , ” Polymers, vol. 13, no. 9, p. 1476, May. 2021. https://doi.org/10.3390/polym13091476
    [38] A. G. Fazlitdinova, V. A. Tyumentsev, “ Phase and Structural Transformation of Polyacrylonitrile Fiber during Two-Stage Thermal Stabilization , ” J. Mater. Sci., vol. 8, no. 11, pp. 54-63, Nov. 2020. https://doi.org/10.4236/msce.2020.811005.
    [39] Y. Ge, Z. Fu, Y. Deng, M. Zhang and H. Zhang, “The effects of chemical reaction on the microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers,” J. Mater. Sci., vol. 54, pp. 12592–12604, Jun. 2019. https://doi.org/10.1007/s10853-019-03781-5.
    [40] J. E. Lee, Y. K. Chae, D. J. Lee, J. Choi, H. G. Chae, T. H. Kim, Sungho Lee, “Microstructural evolution of polyacrylonitrile fibers during industry-mimicking continuous stabilization,” Carbon, vol. 195, pp. 165-173, Aug 2022. https://doi.org/10.1016/j.carbon.2022.04.009.
    [41] Y. Sha, W. Liu, Y. Li and W. Cao, “Formation Mechanism of Skin-Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments, ” Nanoscale Res. Lett.,vol. 14, no. 93. https://doi.org/10.1186/s11671-019-2926-x.
    [42] Lihao Sun, et al, “The influence of oxygen on skin-core structure of polyacrylonitrile-based precursor fibers, ” Polymer.,vol. 197, p. 122516,May. 2020.
    [43]汪建民, “材料分析”中國材料科學學會.(1998)
    [44] V.C.S. Tony, C.H. Voon, B.Y. Lim, Y. Al-Douri, S.C.B. Gopinath, M.K. Md Arshad, S.T. Ten, N.A. Parmin, A.R. Ruslinda, “ Synthesis of silicon carbide nanomaterials by microwave heating: Effect of types of carbon nanotubes ,” Solid State Sci, vol. 98, p.106023, Dec. 2019. https://doi.org/10.1016/j.solidstatesciences.2019.106023.
    [45] J. M. Kremsner and C. O. Kappe. “ Silicon Carbide Passive Heating Elements in Microwave-Assisted Organic Synthesis , ” J. Org. Chem., vol. 71, pp. 4651–4658, Mar. 2006. https://doi.org/10.1021/jo060692v.
    [46] S. Tamang, S. Aravindan, “ 3D numerical modelling of microwave heating of SiC susceptor , ” Appl. Therm. Eng. ,” vol. 162, p. 114250, Nov. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114250.
    [47] S. Cichoň, P. Macháč, L. Fekete, L. Lapčák, “ Direct microwave annealing of SiC substrate for rapid synthesis of quality epitaxial graphene , ” Carbon, vol. 98, Mar. 2016, pp. 441-448, https://doi.org/10.1016/j.carbon.2015.11.023.
    [48] X. Ou, S. Xu, J. M. Warnett, S. M. Holmes, A. Zaheer, A. A. Garforth, M. A. Williams, Y. Jiao, X. Fan, “ Creating hierarchies promptly: Microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) , ” Chem. Eng. J., vol. 312, pp. 1-9, Mar. 2017. https://doi.org/10.1016/j.cej.2016.11.116.
    [49] M. Zhao, et al, “ Ultrarapid Multimode Microwave Synthesis of Nano/Submicron β-SiC , ” Materials, vol. 11, no. 2, p. 317, Feb. 2018. https://doi.org/10.3390/ma11020317.
    [50] H. W. Chao, H. C. Hsu, Y. R. Chen, T. H. Chang, “ Characterizing the dielectric properties of carbon fiber at different processing stages , ” Sci. Rep., vol. 11, p. 17475, Sep. 2021. https://doi.org/10.1038/s41598-021-96949-6.
    [51] J. Hofele, G. Link and J. Jelonnek, “ Reaction Kinetics and Process Model of the Polyacrylonitrile Fibers Stabilization Process Based on Dielectric Measurements , ” Materials, vol. 15, no. 3, p.1222, Feb. 2022. https://doi.org/10.3390/ ma15031222.
    [52] J. Hofele, G. Link, J. Jelonnek. “ DIELECTRIC MONITORING OF THE PAN FIBER STABILIZATION PROCESS , ” Ampere, pp. 365-372, 2019. http://dx.doi.org/10.4995/Ampere2019.2019.9788.
    [53] O. S. Moon, L. S. Min, K. D. Su, R. J. Seung. “ Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy , ” Carbon letters, vol. 18, pp. 18-23 , Apr. 2016. https://doi.org/10.5714/CL.2016.18.018.
    [54] T. H. H. Elagib, E. A. M. Hassan, B. H. Liu, M. H. Yu and K. Q. Han. “ Carbonization performance of pre-oxidized PAN fibers prepared by microwave heating , ” IOP Conf. Ser.: Mater. Sci. Eng., vol. 634, p. 012041, 2019. doi:10.1088/1757-899X/634/1/012041.
    [55] Z. Wangxi , L. Jie, W. Gang. “ Evolution of structure and properties of PAN precursors during their conversion to carbon fibers , ” Carbon, vol. 41, no. 14, pp. 2805-2812, Oct. 2003. https://doi.org/10.1016/S0008-6223(03)00391-9.
    [56] J. Zhao, J. Zhang, T. Zhou, X. Liu, Q. Yuana and A. Zhanga. “ New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber preoxidation: online tracking by two-dimensional correlation FTIR spectroscopy , ” RSC Adv, vol. 6, pp. 4397–4409, 2016. https://doi.org/10.1039/C5RA24320C.
    [57]趙賢文,“微波材料處理及加熱機制之探討”國立清華大學物理博士論文.(2003)
    [58]陳勝富,“微波化學製程腔體設計與驗證-以生質柴油為例”國立清華大學物理先進光源科技學位學程碩士論文.(2018)
    [59]蘇弈維, “微波加速生質柴油之酯化反應研究.”國立清華大學物理研究所碩士論文.(2019)
    [60]劉小斳, “以廢甘油為基礎製備生物可分解高分子--材料,製程及產品開發.”國立清華大學物理研究所光電組碩士論文.(2019)
    [61]許弘竣, “2.45 GHz微波加速生質柴油之酯化反應研究”國立清華大學物理研究所碩士論文.(2020)
    [62]Statista.https://www.statista.com/statistics/689198/worldwide-carbon-fiber-demand-by-market/

    QR CODE