研究生: |
胡智凱 Hu, Zhi-Kai |
---|---|
論文名稱: |
Ni/Pb-Te-Se與Cu/Pb-Te-Se系統的界面反應與其相平衡 Interfacial reactions and phase equilibria of Ni/Pb-Te-Se and Cu/Pb-Te-Se system |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
廖建能
Liao, Chien-Neng 吳子嘉 Wu, Tzu-Chia 林士剛 LIN, Shih-Kang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 熱電材料 、擴散阻障層 、相圖 、界面反應 、鉛-碲-硒 、銅、鎳 |
外文關鍵詞: | Thermoelectric materials, Diffusion barrier, Phase diagram, Interfacial reaction, Pb-Te-Se, Cu,Ni |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源危機日益嚴重,發展綠色能源以及綠色科技成為當今重要的課題,熱電元件可以將廢熱回收,是極具潛力的綠色能源。元件當中有許多接點,接點的性質與熱電元件的性能息息相關,Pb-Te-Se系統為重要且常見的熱電材料系統。Cu常被添加於銲料之中或作為電極使用,而Ni常被作為熱電元件中的擴散阻障層,本研究探討Cu與Ni分別對PbTe、PbSe與Se-90at.%Te的界面反應並利用相圖進行討論。Ni/PbTe於 650℃的界面反應中,觀察到有Ni3Te2以及液相析出物分布於反應區中,其擴散路徑為Ni/(Liqiuid+Ni)/Ni3Te2/Liquid/PbTe;Ni與Te為主要擴散元素。Cu/PbTe 於650℃下的反應非常快速,在3分鐘時觀察到Cu2Te以及另一液相(Liquid II)層生成,而在Cu2Te顆粒之間有另一液相(Liquid I)的析出物,觀察650℃的結果,其擴散路徑為Cu/(Liquid I+ Cu2Te)/Liquid II/PbTe;Cu與Te為主要擴散元素。Ni/PbSe於300℃到400℃溫度下,均觀察到Ni3Pb2Se2,其擴散路徑為Ni/ Ni3Pb2Se2/PbSe,Ni為主要擴散元素。Cu/PbSe於650℃下的界面反應中可觀察到Cu2-xSe以及液相(Liquid I)層生成,而Cu2-xSe之間有液相(Liquid I)的析出物,由結果發現Cu/PbSe與Cu/PbTe的界面反應型態有著類似的情況,觀察650℃的結果,其擴散路徑為Cu/(liquid I+ Cu2-xSe)/Liquid I/PbSe;Cu與Se為主要擴散元素。由Ni/Se-90at.%Te在200℃(固/固)界面反應,觀察到一層NiTe2相有及Ni3Te2相且具有Se的溶解度以及富含Se的區域(Se-rich),其擴散路徑為Ni/Ni3Te2/NiTe2/Se-rich/Se-90at.%Te,Ni與Te為主要擴散元素。在Ni/Se-90at.%Te 於500℃的(固/液)界面反應中,觀察到Ni3Te2以及NiTe2的反應相生成並具有的Se固溶,與(固/固)反應不同的是,合金處觀察到有富含Se的區域(Se-rich)以及NiTe2生成,其擴散路徑為Ni/Ni3Te2/NiTe2/L(Se-rich+NiTe2)/L(Se-90at.%Te);Ni與Te為主要擴散元素。
Because of the increasing demand of alternative source of the energy, the development of green energy and green technology have become an important issue. Thermoelectric modules can enhance energy usage efficiency by converting waste heat into electricity. Thus, thermoelectric modules are promising renewable energy sources. There are various joints in TE modules.. The properties of the joints are critical to the properties of the modules. The Pb-Te-Se ternary system is important TE material system. In addition, Cu is often used as a electrode or solder, and Ni is often used as a diffusion barrier in TE modules. Therefore, this study focuses on Cu and Ni with PbTe, PbSe, and Se-90at.%Te interfacial reaction, respectively, and explained with related phase diagrams. For Ni/PbTe interfacial reaction at 650℃, Ni3Te2 and liquid precipitates can be observed in the reaction zone. The diffusion path is Ni/(Ni+Liquid)/Ni3Te2/Liquid/PbTe. Ni and Te are the dominated diffusion species. Cu/ PbTe interfacial reaction is very fast at 650℃. After 3 min, Cu2Te and liquid phase (Liquid II) are observed, and also other liquid (Liquid I) precipitates. The diffusion path is Cu/(Liquid I+Cu2Te)/Liquid II/PbTe, Cu and Te are the dominated diffusion species. For Ni/PbSe interfacial reaction, only Ni3Pb2Se2 are observed at 300℃ to 400℃, and the diffusion path is Ni/Ni3Pb2Se2/PbSe and Ni is the dominated diffusion species. For Cu/PbSe interfacial reaction, the Cu2-xSe and Liquid phase(Liquid I) can be observed, and also the liquid (Liquid I) precipitates are found. According to the results, Cu/PbSe is similar to Cu/PbTe and the diffusion path is Cu/(liquid I+Cu2-xSe)/Liquid I/PbSe. Cu and Se are the dominated diffusion species. For the Ni/Se-90.0at.%Te (Solid/Solid) interfacial reaction at 200℃, the NiTe2 phase and Ni3Te2 phase with the Se solubility and Se-rich zones are observed and the diffusion path is Ni/Ni3Te2/NiTe2/Se-rich/Se-90at.%Te. Ni and Te are the dominated diffusion species. For the Ni/Se-90at.%Te (Solid/Liquid) interfacial reaction at 500℃, Ni3Te2 and NiTe2 phases with the Se solubility are observed. To compare with Solid/Solid reaction, the Se-rich area and NiTe2 are observed in the alloy. The diffusion path is Ni/Ni3Te2/NiTe2/L(Se-rich+NiTe2)/L(Se-90at.%Te). Ni and Te are the dominated diffusion species.
[1] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G. J. Snyder, "Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications," Journal of Materials Science, vol. 49, no. 4, pp. 1716-1723, 2013.
[2] Reales Ferreres, Xavier, Fabrication and Characterisaton of High Temperature PbTe-based Thermoelectric Modules for Waste Heat Recovery Applications, Doctor of Philosophy thesis, School of Mechanical Materials and Mechatronics Engineering, University of Wollongong, 2018.
[3] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, "A comprehensive review of Thermoelectric Generators: Technologies and common applications," Energy Reports, 2019.
[4] G. Li, S. Shittu, T. M. O. Diallo, M. Yu, X. Zhao, and J. Ji, "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, vol. 158, pp. 41-58, 2018.
[5] 朱旭山(2005),「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,工研院。
[6] A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects," Energy and Environmental Science, vol. 2, pp. 466-479, 2009.。
[7] J. J. V. Loo, "MULTIPHASE DIFFUSION BINARY AND SOLID-STATE SYSTEMS," Progress in Solid state Chemistry, vol. 20, pp. 47-79, 1990.
[8] S.-W. Chen, T.-R. Yang, H.-W. Hsiao, J.-H. Huang, J.-D. Huang, "Ni/Te and Ni/Ag2Te interfacial reactions, " in preparation for publication, 2016.
[9] P. Nash, "The Ni−Pb (Nickel-Lead) system," Bulletin of Alloy Phase Diagrams, vol. 8, pp. 264-268, 1987.
[10] T. B. Massalski, Lee S.Y., " Binary Alloy Phase Diagrams, II Ed.," vol3, pp. 2857-2859, 1990.
[11] S.-W. Chen, Z.-w. Liu, H.-s. Chu, and Z.-y. Huang, "Interfacial reactions between Ni and Bi2(Se0.1Te0.9)3 and its constituent material systems," Journal of Alloys and Compounds, vol. 731, pp. 111-117, 2018.
[12] X. R. Ferreres, S. Aminorroaya Yamini, M. Nancarrow, and C. Zhang, "One-step bonding of Ni electrode to n-type PbTe — A step towards fabricat.ion of thermoelectric generators," Materials & Design, vol. 107, pp. 90-97, 2016.
[13] X. R. Ferreres and S. Aminorroaya Yamini, "Rapid fabrication of diffusion barrier between metal electrode and thermoelectric materials using current-controlled spark plasma sintering technique," Journal of Materials Research and Technology, vol. 8, pp. 8-13, 2019.
[14] M. Orhashi, Y. Noda, L. Chen, Y. Kang, A. Moro, and T. Hirai, "Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering," presented at the 17th International Conference on Thermoelectrics, 1998.
[15] F. Musa and S.-w. Chen, "Interfacial Reactions in Ni/PbSe," Journal of Electronic Materials, vol. 49, no. 10, pp. 6068-6072, 2020.
[16] H. M. F. Debbagh , E.L. Ameziane , M. Azizan and M. Brunel "Physical and chemical analysis of RF sputtered Cu/Te/CdTe structures," Solar Energy Materials and Solar Cells vol. 31, pp. 1-8,1993.
[17] E. L. A. F. DEBBAGH , M. AZIZAN , A. OUTZOURHIT , and M. BRUNEL "Effect of the Substrate Nature on the Structural Properties of Cu/Te Bi-Layers Prepared by RF-Sputtering," Physica Stat.us Solidi (a), vol. 19, p. 157, 1996.
[18] D. J. Chakrabarti and D. E. Laughlin, "The Cu−Pb (Copper-Lead) system," Bulletin of Alloy Phase Diagrams, vol. 5, no. 5, pp. 503-510,1984.
[19] B. Yang, H. Jiang, J. Zhang, B. X. Liu, and H. Wang, "Interfacial Reaction in Cu–Se Diffusion Couples at Low Temperatures," Powder Metallurgy and Metal Ceramics, vol. 54, no. 1-2, pp. 115-118, 2015.
[20] Li, C. C. and Drymiotis, F. and Liao, L. L. and Hung, H. T. and Ke, J. H. and Liu, C. K. and Kao, C. R. and Snyder, G. J, "Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials," Journal of Materials Chemistry C, vol. 3, no. 40, pp. 10590-10596, 2015.
[21] Hsieh, Hsien-ChienWang, Chun-HsienLan, Tian-weyLee, Tse-HsiaoChen, Yang-YuanChu, Hsu-ShenWu, Albert, "Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier," Materials Chemistry and Physics, vol. 246, 2020.
[22] Lee SY, Nash P, "Ni-Te (Nickel-Tellurium). In: Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) Binary alloy phase diagrams, " vol 3, pp 2869-2872, 1990.
[23] P. Nash, "The Ni−Pb (Nickel-Lead) system," Bulletin of Alloy Phase Diagrams, vol. 8, pp. 264-268, 1987.
[24] I. Kainulainen, P. Taskinen, and J. Gisby, "A thermodynamic assessment of the nickel–lead system," Calphad, vol. 34, pp. 441-445, 2010.
[25] T. B. Massalski, Lee S.Y., " Binary Alloy Phase Diagrams, II Ed.," vol3, pp. 2857-2859, 1990.
[26] I. Baranov, A. A. Isaeva, B. A. Popovkin, and R. V. Shpanchenko, "Crystal structure and thermal stability of Ni151.5Pb24S92. Search for selenium and tellurium containing analogs," Russian Chemical Bulletin, vol. 51, pp. 2139-2144, 2002.
[27] E. Rost and E. Vestersjo, "On the System Ni-Se-Te," Acta chemica scandinavica, vol. 22, pp. 2118-2134, 1968.
[28] H. Okamoto, Phase Diagrams of Binary Copper Alloys, P.R. Subramanian and D.E. Laughlin, ed., ASM International, Materials Park, OH, 434-439, 1994.
[29] A. S. Pashinkin and V. A. Fedorov, "Phase Equilibria in the Cu–Te System," Inorganic Materials, vol. 39, no. 6, pp. 539-554, 2003/06/01 2003.
[30] D. J. Chakrabarti and D. E. Laughlin, "The Cu−Se (Copper-Selenium) system," Bulletin of Alloy Phase Diagrams, vol. 2, no. 3, pp. 305-315, 1981/12/01 1981.
[31] N. Y. Akhmedova, N. B. Babanly, A. N. Mamedov, and Y. Y. Yusibov, "MULTI-3D MODELING OF THE LIQUIDUS AND IMMISCIBILITY SURFACES IN THE Cu–Pb–Te SYSTEM," Azerbaijan Chemical Journal, pp. 59-64, 03/29 2019
[32] J. C. Lin, K. C. Hsieh, R. C. Sharma, and Y. A. Chang, "The Pb-Te (lead-tellurium) system," Bulletin of Alloy Phase Diagrams, Vol. 10, pp. 340-347, 1989.
[33] W. Gierlotka, J. Lapsa, and D. Jendrzejczyk-Handzlik, "Thermodynamic description of the Pb-Te system using ionic liquid model," Journal of Alloys and Compounds, Vol. 479, pp. 152-156, 2009.
[34] J. C. Lin, R. C. Sharma, and Y. A. Chang, " Binary alloy phase diagrams, ASM International," Vol. 3, pp.1485, 1990.
[35] Y. Liu, Z. Kang, G. Sheng, L. Zhang, J. Wang and Z. Long, "Phase Equilibria and Thermodynamic Basis for the Cd-Se and Pb-Se Binary Systems," Journal of Electronic Materials, Vol. 41(7), pp 1915–1923, 2012.
[36] G. Ghosh, H. L. Lukas, and L. Delaey, "A thermodynamic assessment of the Se-Te system," CALPHAD, Vol. 12, pp. 295-299, 1988.
[37] G. Ghosh, R. C. Sharma, D. T. Li and Y. A. Chang, "The Se-Te (selenium-Tellurium) system," Journal of phase equilibria, Vol. 15(2), pp. 213-224, 1994.
[38] C. M. Chen and S. W. Chen, "Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures," Acta Materialia, vol. 50, no. 9, pp. 2461-2469, 2002.
[39] A. LaLonde, Y. Pei, H. Wang, and G. Snyder, "Lead telluride alloy thermoelectrics," Materials Today, vol. 14, pp. 526–532, 11/01 2011.
[40] M. Yang et al., "Electrical transport and thermoelectric properties of Te–Se solid solutions," Physics Letters A, vol. 383, no. 22, pp. 2615-2620, 2019.
[41] B.H. Jia, B.B. Jiang and J.Q. He, “Recent advances of n-type low-cost PbSe-based thermoelectric materials”, Materials Today Advances, Vol. 4, 100029, 2019.
[42] G. F. B. A.A. Kodentsov , F.J.J. van Loo, "The diffusion couple technique in phase diagram determination," Journal of Alloys and Compounds, vol. 320, no. 2, pp. 207-217, May 24 2001
[43] 黃澤洋(2017)。Pb-Se-Sn-Te四元熱電材料系統相圖。國立清華大學化工所碩士論文,新竹市。