研究生: |
蘇芳瑩 Su, Fang-Ying |
---|---|
論文名稱: |
利用耗散粒子動力學預測星狀嵌段共聚物(PEO-PLA)n形態於藥物輸送系統下之應用 Morphology Prediction of Star-shaped Block Copolymers (PEO-PLA)n for Drug Delivery by Dissipative Particle Dynamics Simulation |
指導教授: |
張榮語
Chang, Rong-Yeu |
口試委員: |
許嘉翔
Hsu, Chia-Hsiang 曾煥錩 Tseng, Huan-Chang 吳建興 Wu, Jian-Sing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 耗散粒子動力學 、星狀嵌段共聚物 、藥物輸送 、藥物裝載效率 |
外文關鍵詞: | Dissipative particle dynamics, Star-shaped block copolymer, Drug delivery, Drug loading efficiency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藥物載體為微胞很重要的應用之一,將有助於增加藥物溶解度及保護藥物失活等。利用耗散粒子動力學模擬藥物輸送系統雖已發展相當成熟,但大部分著重於藥物釋放,因此本研究將針對藥物裝載過程。本研究以星狀嵌段共聚物作為高分子材料,並探討其與線性嵌段共聚物相較之優劣。因為黏度為影響藥物裝載效率因子之一,將另外探討在剪切流場下,流場對高分子黏度的影響。本研究之藥物載體材料(PEO-PLA)n,聚乳酸(Poly(D-L lactide acid),PLA)具有可降解的特性,而聚乙二醇(Poly(ethylene oxide),PEO)具有溶解度高、無毒以及較大的流體動力學半徑,因此有助於腎臟代謝等特性。
研究結果為於稀薄溶液下,線性嵌段共聚物透過自組裝行為產生球狀微胞,而星狀嵌段共聚物產生多核微胞、甜甜圈微胞、橢圓微胞及網狀結構。當星狀共聚物接枝數越多時,有較低的黏度及較佳的裝載效率;嵌段共聚物中PLA嵌段比例較大時,則有較佳的裝載效率。
Amphiphilic diblock copolymer self-assemble into micelle and vesicle which have been extensively studied as carriers. Carriers have ability to increase drug solubility, exhibit controlled release and protect drug from inactivation. Until now, dissipative particle dynamics (DPD) used to simulate drug delivery systems has been fully developed. This work mainly study linear block copolymers and star-shaped block copolymers with different arms and compare their performance to each other. Because the viscosity can affect drug loading efficiency, this work will investigate under shear flow system and analyze their viscosity. In this work, biodegradable polymers based on star-shaped (PEO-PLA)n will be material of drug carrier. Poly(D-L lactide acid) (PLA) is biodegradable polymer which is one mechanism of drug releasing. Poly(ethylene oxide (PEO) exhibit a high solubility, non-toxic and larger hydrodynamic radius, thus contributed to renal excretion and other characteristics.
The systems of simulation are in dilute solution in this work. The results indicate that linear block copolymers will all self-assemble into spherical micelles. And star-shaped block copolymers will self-assemble into multicore micelle, donut micelle and net structure by changing ratio of the PLA block. When the star-shaped block copolymers have more arms, viscosity will be lower and drug loading efficiency will be better. Larger ratio of the PLA block, there is a better drug loading efficiency.
參考文獻
1.Ward, M.D. and M.J. Horner, Structure and order in soft matter: symmetry transcending length scale. Crystengcomm, 2004. 6: p. 401-407.
2.Jie, P., S.S. Venkatraman, F. Min, B.Y.C. Freddy, and G.L. Huat, Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. Journal of Controlled Release, 2005. 110(1): p. 20-33.
3.Luan, X.S. and R. Bodmeier, In situ forming microparticle system for controlled delivery of leuprolide acetate: Influence of the formulation and processing parameters. European Journal of Pharmaceutical Sciences, 2006. 27(2-3): p. 143-149.
4.Efentakis, M. and A. Koutlis, Release of furosemide from multiple-unit and single-unit preparations containing different viscosity grades of sodium alginate. Pharmaceutical Development and Technology, 2001. 6(1): p. 91-98.
5.Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
6.Horn, J.N., J.D. Sengillo, D.J. Lin, T.D. Romo, and A. Grossfield, Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. Biochimica Et Biophysica Acta-Biomembranes, 2012. 1818(2): p. 212-218.
7.Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
8.Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
9.Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
10.Matsen, M.W. and F.S. Bates, Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996. 29(4): p. 1091-1098.
11.Lin, B., H.D. Zhang, F. Qiu, and Y.L. Yang, Self-Assembly of ABC Star Triblock Copolymer Thin Films Confined with a Preferential Surface: A Self-Consistent Mean Field Theory. Langmuir, 2010. 26(24): p. 19033-19044.
12.Kirkensgaard, J.J.K., Striped networks and other hierarchical structures in A(m)B(m)C(n)(2m+n)-miktoarm star terpolymer melts. Physical Review E, 2012. 85(3).
13.Chen, H.Y. and E. Ruckenstein, Formation of complex colloidal particles: morphologies and mechanisms. Soft Matter, 2012. 8(34): p. 8911-8916.
14.Xia, J. and C.L. Zhong, Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water. Macromolecular Rapid Communications, 2006. 27(14): p. 1110-1114.
15.Sheng, Y.J., C.H. Nung, and H.K. Tsao, Morphologies of star-block copolymers in dilute solutions. Journal of Physical Chemistry B, 2006. 110(43): p. 21643-21650.
16.Liu, W., H.J. Qian, Z.Y. Lu, Z.S. Li, and C.C. Sun, Dissipative particle dynamics study on the morphology changes of diblock copolymer lamellar microdomains due to steady shear. Physical Review E, 2006. 74(2).
17.Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: Insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
18.Peppas, N.A. and R. Langer, New Challenges in Biomaterials. Science, 1994. 263(5154): p. 1715-1720.
19.Guo, Y.Y., Z.W. Ma, Z.J. Ding, and R.K.Y. Li, Study of hierarchical microstructures self-assembled by pi-shaped ABC block copolymers in dilute solution using self-consistent field theory. Journal of Colloid and Interface Science, 2012. 379: p. 48-55.
20.Khoe, U., Y.L. Yang, and S.G. Zhang, Self-Assembly of Nanodonut Structure from a Cone-Shaped Designer Lipid-like Peptide Surfactant. Langmuir, 2009. 25(7): p. 4111-4114.
21.Luo, Z.L. and J.W. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release, 2012. 162(1): p. 185-193.
22.Posocco, P., M. Fermeglia, and S. Pricl, Morphology prediction of block copolymers for drug delivery by mesoscale simulations. Journal of Materials Chemistry, 2010. 20(36): p. 7742-7753.
23.Chen, H.Y. and E. Ruckenstein, Formation and Degradation of Multicomponent Multicore Micelles: Insights from Dissipative Particle Dynamics Simulations. Langmuir, 2013. 29(18): p. 5428-5434.
24.Choi, Y.R., Y.H. Bae, and S.W. Kim, Star-shaped poly(ether-ester) block copolymers: Synthesis, characterization, and their physical properties. Macromolecules, 1998. 31(25): p. 8766-8774.
25.Jeong, B., Y.K. Choi, Y.H. Bae, G. Zentner, and S.W. Kim, New biodegradable polymers for injectable drug delivery systems. Journal of Controlled Release, 1999. 62(1-2): p. 109-114.
26.Velazquez, M.E., A. Gama-Goicochea, M. Gonzalez-Melchor, M. Neria, and J. Alejandre, Finite-size effects in dissipative particle dynamics simulations. Journal of Chemical Physics, 2006. 124(8).
27.Periodic Boundary Condition. Available from: http://matdl.org/repository/view/matdl:857.
28.Evans, D.J. and G.P. Morriss, Nonlinear-Response Theory for Steady Planar Couette-Flow. Physical Review A, 1984. 30(3): p. 1528-1530.
29.Lees, A.W. and S.F. Edwards, Computer Study of Transport Processes under Extreme Conditions. Journal of Physics Part C Solid State Physics, 1972. 5(15): p. 1921-&.
30.Hoover, W.G., D.J. Evans, R.B. Hickman, A.J.C. Ladd, W.T. Ashurst, and B. Moran, Lennard-Jones Triple-Point Bulk and Shear Viscosities - Green-Kubo Theory, Hamiltonian-Mechanics, and Non-Equilibrium Molecular-Dynamics. Physical Review A, 1980. 22(4): p. 1690-1697.
31.Moore, J.D., S.T. Cui, H.D. Cochran, and P.T. Cummings, Transient rheology of a polyethylene melt under shear. Physical Review E, 1999. 60(6): p. 6956-6959.
32.Liu, J.B., Y.H. Xiao, and C. Allen, Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004. 93(1): p. 132-143.
33.Drug Loading. Available from: http://english.ibp.cas.cn/rh/rp/201003/t20100311_51355.html.
34.Chen, L., T. Jiang, J.P. Lin, and C.H. Cai, Toroid Formation through Self-Assembly of Graft Copolymer and Homopolymer Mixtures: Experimental Studies and Dissipative Particle Dynamics Simulations. Langmuir, 2013. 29(26): p. 8417-8426.