簡易檢索 / 詳目顯示

研究生: 黃雁堂
Yen-Tang Huang
論文名稱: 射頻金氧半場效電晶體之基板模型建立及參數直接萃取方法
RF MOSFET Substrate Modeling and A New Parameter Direct Extraction Method
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 67
中文關鍵詞: 基板模型建立金氧半場效電晶體參數萃取小訊號等效電路
外文關鍵詞: substrate modeling, MOSFET, parameter extraction, small-signal equivalent circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於射頻積體電路其工作頻率範圍不斷地上升,若欲得到準確的電路模擬結果,基板寄生效應就必須納入金氧半場效電晶體的元件模型之中。然而,以傳統的元件模型而言,這方面的工作仍有再改善的必要。

    因此,本篇論文提出一個新的參數萃取方法,能夠萃取出包含基板寄生電阻及電容之金氧半場效電晶體元件模型的所有小訊號參數。根據由我們首次提出的Iteration Method,元件小訊號等效電路模型的參數能夠直接利用電路分析方程式來求出,而不需任何假設。

    總的來說,我們提出的新方法在沒有經過任何多餘的參數最佳化處理的情況下,以500 MHz到高達40 GHz的頻段而言,都能夠得到令人滿意的準確元件模型。


    As the operating frequency rises to the gigahertz range for RF applications, the extrinsic parasitics related to the lossy Si substrate should be included into the MOSFET model physically for achieving accurate and predictive simulation results. However, it is still not described appropriately in the traditional MOSFET models.

    Therefore, this work proposes a new approach to extract RF CMOS small-signal model parameters including the substrate parasitic RC network. Based on the newly developed “iteration method”, the model parameters can be extracted directly through the analytical equations without any assumptions.

    In sum, without any additional optimization procedure, the proposed methodology shows overall satisfactory agreement to the measurement results from 500 MHz to 40 GHz.

    Abstract I Table of Contents III Figure Captions V Table Captions IX Chapter 1 Introduction 1.1 Motivation 1 1.2 Methodology 3 Chapter 2 Overview of Substrate Models 2.1 Importance of the Substrate Model 4 2.2 Substrate Coupling Mechanisms 5 2.2.1 Device-Level Intra-Device Substrate Coupling 5 2.2.2 Circuit-Level Inter-Device Substrate Coupling 6 2.3 Literature Review 8 2.3.1 Extended BSIM Model 8 2.3.2 Refined One Resistance Model 12 2.3.3 pi Model 13 2.3.4 Series-RC Model 14 Chapter 3 Substrate Model Analysis 3.1 Substrate Model Description 17 3.2 Y-Parameter Analysis 19 3.3 Parameter Extraction Method 22 Chapter 4 On-Wafer RF Measurement 4.1 Device-under-test Description 32 4.2 RF Measurement Setup 35 4.3 De-embedding Procedure 37 Chapter 5 Experimental Results and Discussion 5.1 Model Validation 42 5.2 Significance of Proposed Methodology 55 5.3 Dependence of Substrate Network Parameters on 57 Physical Structures Chapter 6 Conclusion 64 Bibliography 65

    [1] M. J. Deen and T. A. Fjeldly, CMOS RF Modeling,
    Characterization and Applications. Singapore: World
    Scientific, 2002.
    [2] T. Ytterdal, Y. Cheng, and T. A. Fjeldly, Device
    Modeling for Analog and RF CMOS Circuit Design. West
    Sussex, England: Wiley, 2003.
    [3] S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter, and
    B. J. Sheu, "Accurate modeling and parameter extraction
    for MOS transistors valid up to 10 GHz," IEEE Trans.
    Electron Devices, vol. 46, pp. 2217-2227, Nov. 1999.
    [4] H. Hjelmgren and A. Litwin, “Small-signal substrate
    resistance effects in RF CMOS identified through device
    simulation,” IEEE Trans. Electron Devices, vol. 48,
    pp. 397–399, Feb. 2001.
    [5] S. M. Sze, Physics of Semiconductor Devices. New York:
    Wiley, 1981.
    [6] M. Je and H. Shin, “Gate Bias Dependence of the
    Substrate Signal Coupling Effect in RF MOSFETs,” IEEE
    Electron Device Letters, vol. 24, pp. 183-185, Mar.2003.
    [7] B. Razavi, Design of Analog CMOS Integrated Circuits.
    New York: McGraw-Hill, 2001.
    [8] A. Samavedam, A. Sadate, K. Mayaram, and T. S. Fiez,
    “A Scalable Substrate Noise Coupling Model for Design
    of Mixed-Signal IC's,” IEEE J. Solid State Circuits,
    vol. 35, pp. 895-904, June 2000.
    [9] S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, "A
    simple subcircuit extension of the BSIM3v3 model for
    CMOS RF design," IEEE J. Solid-State Circuits, vol. 35,
    pp. 612-624, Apr. 2000.
    [10] S. F. Tin and K. Mayaram, “Substrate network modeling
    for CMOS RF circuit simulation,” IEEE 1999 Custom
    Integrated Circuits Conf. Proc., pp. 583-586, May 1999.
    [11] R. Suravarapu, K. Mayaram, and C. J. R. Shi, "A layout
    dependent and bias independent scalable substrate
    model for CMOS RF transistors," in Proc. IEEE Radio
    and Wireless Conf., 2002, pp. 217-220.
    [12] C. Enz and Y. Cheng, "MOS transistor modeling for RF
    IC design," IEEE J. Solid-State Circuits, vol. 35, pp.
    186-201, Feb. 2000.
    [13] J.-J. Ou, X. Jin, I. Ma, C. Hu, and P. Gray, “CMOS RF
    modeling for GHz communication IC's,” in Proc. VLSI
    Symp. Technology Honolulu, HI, June 1998.
    [14] D. Pehlke, M. Schroter, A. Burstein, M. Matloubian,
    and M. Chang, “High-frequency application of MOS
    compact models and their development for scalable RF
    model libraries,” IEEE 1998 Custom Integrated
    Circuits Conf. Proc., pp. 219-222, May 1998.
    [15] W. Liu, R. Gharpurey, M. Chang, U. Erdogan, R.
    Aggarwal, and J. Mattia, “R. F. MOSFET modeling
    accounting for distributed substrate and channel
    resistances with emphasis on the BSIM3v3 SPICE
    model,” in IEDM Tech. Dig., 1997, pp. 309-312.
    [16] J. Han, M. Je, and H. Shin, “A simple and accurate
    method for extracting substrate resistance of RF
    MOSFETs,” IEEE Electron Device Lett., vol. 23, pp.
    434-436, July 2002.
    [17] C. Enz, “An MOS transistor model for RF IC design
    valid in all regions of operation,” IEEE Trans.
    Microwave Theory Tech., vol. 50, pp. 342-359, Jan.
    2002.
    [18] Y. Cheng and M. Matloubian, “On the high frequency
    characteristics of substrate resistance in RF
    MOSFETs,” IEEE Electron Device Lett., vol. 21, pp.
    604-606, Dec. 2000.
    [19] C.-H. Kim, C. S. Kim, H. K. Yu, and K. S. Nam,
    “Unique extraction of substrate parameters of common-
    source MOSFET's,” IEEE Microwave Guided Wave Lett.,
    vol. 9, pp. 108-110, Mar. 1999.
    [20] D. Heo, E. Gebara, Y.-J. E. Chen, S.-Y. Yoo, M. Hamai,
    Y. Suh, and J. Laskar, “An improved deep
    submicrometer MOSFET RF nonlinear model with new
    breakdown current model and drain-to-substrate
    nonlinear coupling,” IEEE Trans. Microwave Theory
    Tech., vol. 48, pp. 2361-2369, Dec. 2000.
    [21] S. Lee, C. S. Kim, and H. K. Yu, “A small-signal RF
    model and its parameter extraction for substrate
    effects in RF MOSFETs,” IEEE Trans. Electron Devices,
    vol. 48, pp. 1374–1379, July 2001.
    [22] I. Kwon, M. Je, K. Lee, and H. Shin, “A simple and
    analytical parameter-extraction method of a microwave
    MOSFET,” IEEE Trans. Microwave Theory Tech., vol. 50,
    pp. 1503-1509, June 2002.
    [23] Y. P. Tsividis, Operation and Modeling of the MOS
    Transistor, 2nd ed. New York: McGraw-Hill, 1999.
    [24] G. Gonzalez, Microwave Transistor Amplifiers: Analysis
    and Design, 2nd ed. Upper Saddle River: Prentice-Hall,
    1997.
    [25] T. E. Kolding, “On-Wafer Calibration Techniques for
    Giga-Hertz CMOS Measurements,” IEEE 1999 Int. Conf.
    on Microelectronic Test Structures Proc., vol. 12, pp.
    105-110, Mar. 1999.
    [26] L. F. Tiemeijer and R. J. Havens, “A calibrated
    lumped-element de-embedding technique for on-wafer RF
    characterization of high-quality inductors and high
    speed transistors,” IEEE Trans. Electron Devices,
    vol. 50, no. 3, pp. 822–829, Mar. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE