研究生: |
黃子誠 Huang, Tzu-Cheng |
---|---|
論文名稱: |
以近室壓光電子能譜術探討氧化鋅/氧化亞銅奈米顆粒異質接面的二氧化碳光催化還原反應 Ambient Pressure X-ray Photoemission Spectroscopy Study of Photocatalytic Reduction of CO2 on ZnO/Cu2O Nanoparticle Heterojunction |
指導教授: |
楊耀文
Yang, Yaw-Wen 黃暄益 Huang, Hsuan-Yi |
口試委員: |
劉柏宏
Liu, Bo-Hong 裘性天 Chiu, Hsin-Tien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 近室壓光電子能譜術 、半導體異質結構 、二氧化碳光還原反應 、臨場量測 |
外文關鍵詞: | APXPS, semiconductor heterojuction, CO2 photoreduction, in-situ detection |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討氧化鋅/氧化亞銅所組成的第二型半導體異質結構進行光催化還原二氧化碳的表現之研究。本實驗選用兩種預期有不同光催化活性的氧化亞銅結構,分別為(100)面的立方體(cube)氧化亞銅與(110)面的菱形十二面體(rhombic dodecahedron, r.d.)氧化亞銅,並利用近室壓光電子光譜術(APXPS)對光催化劑表面上反應物種的變化進行表徵。我們準備了一系列樣品,例如ZnO (7%)/ Cu2O (cube)、ZnO (7%)/ Cu2O (r.d.)、ZnO (20%)/ Cu2O (r.d.)以及ZnO (40%)/ Cu2O (r.d.)。由APXPS C 1s光譜顯示出在菱形十二面體氧化亞銅系列的樣品表面上生成了大量碳中間體(例如甲酸酯,羰基和甲氧基),這證明了ZnO / Cu2O(r.d)比ZnO / Cu2O (cube)更具反應活性。此外,在Cu2O (r.d.)的系統中,相較於低氧化鋅負載量(7%)的產物以甲醇為主,數據顯示當提高ZnO的負載量(40%)會導致生成甲烷的比例提高。我們使用APXPS的數據建構出與光催化劑表現相關的能帶圖,經由計算後,與ZnO / Cu2O (cube)系統的數值相比,發現ZnO/Cu2O (r.d.)系統中,氧化亞銅與氧化鋅的價帶位能差(conduction band offset, ∆ECBO)與導帶位能差(valence band offset, ∆EVBO)皆來的大,但氧化亞銅的價帶與氧化鋅的導帶之間的能量差卻比較小,此因素導致光電子電洞對有更高機率的在此兩能階中再結合,讓氧化亞銅的導帶累積更多的光激發電子幫助催化反應;亦有可能是在ZnO / Cu2O (cube)系統中異質接面產生時氧化亞銅價帶下彎過多,造成電子傳遞能力下降。
In this thesis, we report a photocatalytic reduction study of carbon dioxide on semiconductor heterojunctions constructed from nanoparticles of cuprous oxide and zinc oxide with cuprous oxide of two different facets. The samples investigated include ZnO (7%)/ Cu2O (cube), ZnO (7%)/ Cu2O (r.d.) and ZnO (40%)/ Cu2O (r.d.). Two types of cuprous oxide nano-crystals were selected based on the anticipated difference in photocatalytic performance: the cubic structure terminated with (100) faces, and the rhombic dodecahedron (r.d.) terminated with (110) faces. Ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to track the change of reaction species on the photocatalyst surfaces. The ZnO/Cu2O (r.d.) is found to be more reactive than ZnO/Cu2O (cube) as evidenced by a larger production of carbon species such as carbonate, formate, carbonyl, and methoxy on the surface when the nano-catalysts were exposed to gaseous carbon dioxide and water of mbar pressure and illuminated with UV photons. Further, increasing ZnO loading from 7% to 40%, on Cu2O (r.d.) alters reaction pathway, yielding more methane instead of methanol. The energy diagrams useful in discerning the catalytic performance of photocatalysts are also constructed by means of APXPS data. The semiconductor interfaces of ZnO/Cu2O (r.d.) and ZnO/ Cu2O (cube) are all belonged to type II heterojunction. The valence band maximum (VBM) of Cu2O (r.d.) is found to be located at 1.28 eV lower than the conduction band minimum (CBM) of ZnO, whereas the corresponding energy level difference for ZnO/ Cu2O (cube) is increased to 1.83 eV. We speculated that the smaller energy difference brings about a faster interfacial recombination rate between the holes residing in VBM of Cu2O (r.d.) and electrons residing in CBM of ZnO when the materials are illuminated with UV photos, resulting in an improved charge separation with electrons accumulated at Cu2O (r.d.) and holes at ZnO, as depicted in the so-called Z-scheme.
1. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.
2. http://www.columbia.edu/~mhs119/Temperature/.
3. https://www.rti.org.tw/news/view/id/2020597.
4. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758.
5. He, Y.; Zhang, L.; Teng, B.; Fan, M., New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environ. Sci. Technol. 2015, 49, 649-656.
6. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A., Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B 2017, 217, 485-493.
7. Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11 , 5262-5271.
8. Wu, S.-C.; Tan, C.-S.; Huang, M. H., Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27 , 1604635.
9. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M., Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042-1063.
10. Lakhera, S. K.; Watts, A.; Hafeez, H. Y.; Neppolian, B., Interparticle Double Charge Transfer Mechanism of Heterojunction α-Fe2O3/Cu2O Mixed Oxide Catalysts and Its Visible Light Photocatalytic Activity. Catal. Today 2018, 300, 58-70.
11. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261-1267.
12. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H., Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020.
13. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H., Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.
14. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H., Photocatalytic Activity Suppression of Ag3PO4- Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123 (4), 2314-2320.
15. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H., Facet- Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582-3589.
16. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H., Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944-12950.
17. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. 2013, 52, 7372-7408.
18. https://onlinelibrary.wiley.com/doi/10.1002/ange.19820940446.
19. Bluhm, H., Photoelectron spectroscopy of surfaces under humid conditions. J Electron Spectrosc. Relat. Phenom. 2010, 177, 71-84.
21. https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-mass-spectrometry.html.
22. https://en.wikipedia.org/wiki/Quadrupole_mass_analyzer.
23. https://www.itsfun.com.tw/%E5%85%89%E9%9B%BB%E5%80%8D%E5%A2%9E%E7%AE%A1/wiki-5012396-9508176.
24. https://xpssimplified.com/elements/copper.php.
25. Biesinger, M. C., Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325-1334.
26. Jiang, P.; Prendergast, D.; Borondics, F.; Porsgaard, S.; Giovanetti, L.; Pach, E.; Newberg, J.; Bluhm, H.; Besenbacher, F.; Salmeron, M., Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. J. Chem. Phys. 2013, 138, 024704.
27. Deng, X.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M., Surface Chemistry of Cu in the Presence of CO2 and H2O. Langmuir 2008, 24, 9474-9478.
28. Koitaya, T.; Yamamoto, S.; Shiozawa, Y.; Yoshikura, Y.; Hasegawa, M.; Tang, J.; Takeuchi, K.; Mukai, K.; Yoshimoto, S.; Matsuda, I.; Yoshinobu, J., CO2 Activation and Reaction on Zn-Deposited Cu Surfaces Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy. ACS Catal. 2019, 9, 4539-4550.
29. Li, B.; Fan, K.; Ma, X.; Liu, Y.; Chen, T.; Cheng, Z.; Wang, X.; Jiang, J.; Liu, X., Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines. J. Colloid Interface Sci. 2016, 478, 36-45.
30. Chandra, V.; Yu, S. U.; Kim, S. H.; Yoon, Y. S.; Kim, D. Y.; Kwon, A. H.; Meyyappan, M.; Kim, K. S., Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 2012, 48, 735-737.
31. Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J. M.; Serrano,D. P.; Durrant, J. R.; de la Peña O’Shea, V. A., Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 2018, 9, 4986.
32. Tiwari, D.; Goel, C.; Bhunia, H.; Bajpai, P. K., Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. J. Environ. Manage. 2017, 197, 415-427.
33. Zhang, L.; Li, N.; Jiu, H.; Qi, G.; Huang, Y., ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram. Int. 2015, 41, 6256-6262.
34. Shiozawa, Y.; Koitaya, T.; Mukai, K.; Yoshimoto, S.; Yoshinobu, J., The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS. J. Chem. Phys. 2020, 152, 044703.
35. Bai, B. C.; Kim, E. A.; Lee, C. W.; Lee, Y.-S.; Im, J. S., Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl. Surf. Sci. 2015, 353, 158-164.
36. Chang, W.-Y.; Lin, C.-A.; He, J.-H.; Wu, T.-B., Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 2010, 96, 242109.
37. Tissot, H.; Wang, C.; Stenlid, J. H.; Panahi, M.; Kaya, S.; Soldemo, M.; Ghadami Yazdi, M.; Brinck, T.; Weissenrieder, J., Interaction of Atomic Hydrogen with the Cu2O(100) and (111) Surfaces. J. Phys. Chem. C 2019, 123, 22172-22180.
38. Önsten, A.; Weissenrieder, J.; Stoltz, D.; Yu, S.; Göthelid, M.; Karlsson, U. O., Role of Defects in Surface Chemistry on Cu2O(111). J. Phys. Chem. C 2013, 117, 19357-19364.
39. Yang, M.; Zhu, J.-J., Spherical hollow assembly composed of Cu2O nanoparticles. J. Cryst. Growth 2003, 256, 134-138.
40. Niranjan, K.; Dutta, S.; Varghese, S.; Ray, A. K.; Barshilia, H. C., Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Appl. Phys. A 2017, 123, 250.
41. Vohs, J. M.; Barteau, M. A., Photoelectron spectroscopy of diethylzinc on the polar surfaces of zinc oxide. J Electron Spectrosc. Relat. Phenom. 1989, 49 , 87-96.
42. Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J., Subsurface oxide plays a critical role in CO activation by Cu(111) surfaces to form chemisorbed CO, the first step in reduction of CO. Proc. Natl. Acad. Sci. 2017, 114 , 6706.
43. Brandt, R. E.; Young, M.; Park, H. H.; Dameron, A.; Chua, D.; Lee, Y. S.; Teeter, G.; Gordon, R. G.; Buonassisi, T., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Appl. Phys. Lett. 2014, 105, 263901.
44. Huang, L.; Peng, F.; Ohuchi, F. S., “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 2009, 603, 2825-2834.