研究生: |
阮大成 Da-Cheng Juan |
---|---|
論文名稱: |
針對漏電流功耗最小化之精細調整睡眠電晶體尺寸演算法 Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization |
指導教授: |
張世杰
Shih-Chieh Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 漏電流 |
外文關鍵詞: | Power |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各種電路中,能源消耗分析扮演相當重要的角色。漏電流問題在先進奈米製程下變的越來越嚴重,也就是說,漏電流佔總能源消耗的比例一直呈現指數倍率成長。嚴重的漏電流將導致手持裝置待機時間縮短,增加使用者的不便。電源閘是減低漏電流最有效率的方法之一,另兩種方法分別為多種門檻電壓電晶體設計(Multi-Vth)以及體偏壓(body-bias)。在此篇論文中,我們鎖定電源閘方法,從時間的觀點切入,精確分析最大順時電流、電壓降以及睡眠電晶體系統之間的聯繫。進一步由此聯繫發展出一套睡眠電晶體面積最小化演算法,目的是在電源閘架構 - 分散式睡眠電晶體系統下,降低睡眠電晶體的總面積也就是寬度。傳統的方法都只考慮一個時脈內的瞬時最大電流來估計睡眠電晶體的面積。然而,透過我們在電源閘架構 - 分散式睡眠電晶體系統下由時間角度對瞬時最大電流進行分析後,我們發現傳統的方式往往過於悲觀而導致過大的睡眠電晶體面積。平均而言,與傳統的方式相比,我們的方法可以減低21%的睡眠電晶體面積以及漏電流消耗。我們更針對程式的計算複雜度進行改良,提出有效率的時脈分割方法。實驗結果顯示,平均而言,我們的時脈分割方法將比傳統的方法快了八倍。從各角度觀之,此論文的觀點是相當創新,而且實驗的結果是相當良好的。
Power gating is one of the most effective ways to reduce leakage power. In this paper, we introduce a new relationship among Maximum Instantaneous Current, IR drops and sleep transistor networks from a temporal viewpoint. Based on this relationship, we propose an algorithm to reduce the total sizes of sleep transistors in Distributed Sleep Transistor Network designs. On average, the proposed method can achieve 21% reduction in the sleep transistor size.
[1]. M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry , “Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique,” Proc. of the DAC, pp. 480-485, 2002.
[2]. D. S. Chiou, S. H. Chen, S. C. Chang, and C. Yeh, “Timing Driven Power Gating,” Proc. of the DAC, pp. 121-124, 2006.
[3]. H. Chang and S. S. Sapatnekar, “Full-Chip Analysis of Leakage Power Under Process Variations, Including Spatial Correlations,” Proc. of the DAC, pp. 523-528, 2005.
[4]. C. T. Hsieh, J. C. Lin, and S. C. Chang, “A Vectorless Estimation of Maximum Instantaneous Current for Sequential Circuits,” Proc. of ICCAD, pp. 537-540, 2004.
[5]. J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor Sizing Issues and Tool for Multi-Threshold CMOS Technology,” Proc. of the DAC, pp. 409-414, 1997.
[6]. J. Kao, S. Narendra, and A. Chandrakasan, “MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharging Patterns,” Proc. of the DAC, pp. 495-500, 1998.
[7]. H. Kriplani, F. Najm, and I. N. Hajj, “Pattern independent maximum current estimation in power and ground buses of CMOS VLSI circuits: algorithms, signal correlations, and their resolution,” IEEE Transaction on CAD, vol. 14, no. 8, pp. 998-1012, Aug. 1995.
[8]. C. Long, and L. He, “Distributed Sleep Transistor Network for Power Reduction,” IEEE Transaction on VLSI systems, vol. 12, no. 9, Sep. 2004.
[9]. S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J. Yamada, “A 1-V Multithreshold-Voltage CMOS Digital Signal Processor for Mobile Phone Application,” IEEE JSSC, vol. 31, no. 11, Nov. 1996.
[10]. R. R. Rao, A. Devgan, D. Blaauw, and D. Sylvester, “Parametric Yield Estimation Considering Leakage Variablity,” Proc. of the DAC, pp. 442-447, 2004.
[11]. K. Roy, S. Mukhopadhyay and H. M. Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proc. of the IEEE, Feb. 2003.
[12]. K. Shi, and D. Howard, “Challenges in Sleep Transistor Design and Implementation in Low-Power Designs,” Proc. of the DAC, pp. 113-116, 2006.
[13]. C. Y. Wang and K. Roy, “Maximization of power dissipation in large CMOS circuits considering spurious transitions,” IEEE Transaction on Circuits and Systems, vol 47, no 4, pp. 483-490, Apr. 2000.
[14]. W. Wang, M. Anis, and S. Areibi, “Fast Techniques for Standby Leakage Reduction in MTCMOS Circuits,” Proc. of the IEEE International SOCC, pp. 21-24, 2004.
[15]. Synopsys Inc. PrimePower Version-X 2005, 12 – User’s Manual.