簡易檢索 / 詳目顯示

研究生: 吳建賢
Wu, Jian- Shian
論文名稱: SUMO-1調控人類粒線體第一蛋白質複合體中NDUFS7次單元sumoylation修飾之研究
Sumoylation of Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) by SUMO-1
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員: 林立元
Lin, Lih-Yuan
高茂傑
Kao, Mou-Chieh
張壯榮
Chang, Chuang-Rung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 粒線體複合體鐵硫蛋白小泛素
外文關鍵詞: NDUFS7, SUMO, Mitochondria, sumoylation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) 是人類粒線體第一蛋白質複合體中具高度保留性的一個蛋白。研究指出,NDUFS7會鍵結於一個[4Fe-4S]的鐵硫中心(iron-sulfur cluster N2, tetranuclear),其功能為擔任第一蛋白質複合體中電子傳遞的最後電子接受者。NDUFS7的基因編碼於細胞核的基因體內,在細胞質轉譯出蛋白質後才會進入粒線體,並組裝於第一蛋白質複合體的親水區塊。多數表現於粒線體基質的蛋白質是在細胞質中合成,接著再經由mitochondrial targeting sequences (MTSs)帶領其往粒線體移動並進入粒線體內行使特定功能。
    在先前的研究當中,我們定義出NDUFS7上位於N端的60個胺基酸是一段有效的MTS。我們同時也發現NDUFS7的C端含有一段可能的nuclear localization signal (NLS) 以及一段可能的 nuclear export signal (NES)。這些結果顯示NDUFS7在細胞內有著細胞核和粒線體兩種分佈。關於調控蛋白在細胞核和細胞質間移動的機制,sumoylation近年來被認為扮演著很重要的角色。Small ubiquitin-related modifiers (SUMOs)在細胞質轉譯合成後,可以在E1 (SAE1/SAE2), E2 (UBC9) 和E3酵素的協助下鍵結到目標蛋白並進一步調控其下游反應。在這篇研究中我們利用預測軟體發現NDUFS7有許多可能會和SUMO鍵結的氨基酸序列,因此,我們在HEK293細胞裡面共同大量表現NDUFS7, SUMO-1 和UBC9,並且利用西方墨點法去偵測NDUFS7和 SUMO-1在細胞內是否結合。結果顯示,就上述的實驗條件下,NDUFS7可以被SUMO-1進行sumoylation。為了進一步確認實驗結果,我們接著在細胞內再一次共同表現NDUFS7, SUMO-1,UBC9以及SUMO-specific protease (SENP),並發現在大量表現SENP時,我們利用抗體所偵測到的NDUFS7和SUMO-1的結合大幅減少,再一次證明NDUFS7的確會經由SUMO-1調控其sumoylation。此外,在本篇研究中,我們也確認NDUFS7上第202個胺基酸-Lys202是一個主要和SUMO-1蛋白鍵結的位置並且吻合傳統的sumoylation motif,同時我們也發現這個位置(Lys 202)的sumoylation對於NDUFS7蛋白的穩定性有著重大影響。然而根據目前的實驗數據仍然無法確立NDUFS7 sumoylation的確切的目的及功能,接下來的研究必須針對這部分的課題進一步做更深入的探討。


    Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) is one of the most conserved core subunits of mitochondrial complex I. NDUFS7 has a bound iron-sulfur cluster N2 (tetranuclear) which is the terminal redox center in the electron transport chain (ETC) of complex I. NDUFS7 protein is encoded by the nuclear genome and is incorporated in the peripheral segment of complex I. Most mitochondrial matrix proteins are synthesized in the cytosol and imported into mitochondria by mitochondrial targeting sequences (MTSs).
    We previously defined the N terminus of the first 60 amino acids of NDUFS7 is an effective MTS. We also identified that there is a nuclear localization signal (NLS) and a nuclear export signal (NES) located in the C-terminus of NDUFS7. Sumoylation has been recognized to play an important role in protein nucleocytoplasmic transportation. Small ubiquitin-related modifiers (SUMOs) could be conjugated to target proteins by E1 (SAE1/SAE2), E2 (UBC9) and E3 enzymes after translation. Using sequence predication software, NDUFS7 protein was found to have several potential sumoylation sites. In this study, we co-transfected plasmids expressed NDUFS7, SUMO-1 and UBC9 into HEK293 cells, and detected the conjugation of NDUFS7 with SUMO-1 by western blotting with different antibodies. The results indicated that NDUFS7 could indeed be sumoylated at the current experimental conditions in vivo. To confirm these findings, SUMO-specific protease (SENP) was co-expressed with NDUFS7, SUMO-1 and UBC9 proteins in some experiments. The results showed that overexpression of SENP could reduce the level of NDUFS7 and SUMO-1 interaction. These results suggested that NDUFS7 can be sumoylated by SUMO-1 in cells. In addition, we also identified one of the sumoylation sites of NDUFS7 to be Lys 202, which is consistent with the consensus sumoylation motif and is required for NDUFS7 protein stability. Further studies are needed and on the way to investigate the functional detail of NDUFS7 sumoylation.

    摘要.................................................... I Abstract............................................... III Abbreviations.......................................... VIII Introduction........................................... 1 A. Mitochondrion....................................... 1 B. Sumoylation......................................... 9 C. The effects of sumoylation on biological processes.. 13 D. Mitochondrion and sumoylation....................... 18 The objective of this study............................ 20 Materials and methods.................................. 21 Result................................................. 28 NDUFS7 is a sumoylation substrate of SUMO-1............ 28 NDUFS7 has more than one accepter site for sumoylation ? ........................................................30 Identification of Lys 202 is one of the sumoylation accepter sites.................................................. 31 Sumoylation does not alter nuclear localization of LacZ- NDUFS7199-213 constructs............................... 32 Sumoylation of NDUFS7 at Lys 202 does not alter its mitochondrial translocation............................ 33 Sumoylation increases NDUFS7 protein stability......... 35 Discussion............................................. 37 The sumoylation accepter sites and the potential SUMO-interacting motif (SIM) on NDUFS7...................... 37 The biological significance of NDUFS7 sumoylation...... 40 The NDUFS7 and SUMO-2/3................................ 42 Tables................................................. 44 Figures................................................ 46 Reference.............................................. 57 Appendixes............................................. 64

    1. Yamada, Y. and H. Harashima, Mitochondrial drug delivery
    systems for macromolecule and their therapeutic
    application to mitochondrial diseases. Adv Drug Deliv
    Rev, 2008. 60(13-14): p. 1439-62.
    2. Smeitink, J., L. van den Heuvel, and S. DiMauro, The
    genetics and pathology of oxidative phosphorylation. Nat
    Rev Genet, 2001. 2(5): p. 342-52.
    3. Andersson, S.G., et al., On the origin of mitochondria: a
    genomics perspective. Philos Trans R Soc Lond B Biol Sci,
    2003. 358(1429): p. 165-77; discussion 177-9.
    4. Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA
    mutations in human disease. Nat Rev Genet, 2005. 6(5): p.
    389-402.
    5. Taanman, J.W., The mitochondrial genome: structure,
    transcription, translation and replication. Biochim
    Biophys Acta, 1999. 1410(2): p. 103-23.
    6. Lister, R., et al., Protein import into mitochondria:
    origins and functions today (review). Mol Membr Biol,
    2005. 22(1-2): p. 87-100.
    7. Carroll, J., et al., Bovine complex I is a complex of 45
    different subunits. J Biol Chem, 2006. 281(43): p. 32724-
    7.
    8. Lazarou, M., et al., Assembly of mitochondrial complex I
    and defects in disease. Biochim Biophys Acta, 2009.
    1793(1): p. 78-88.
    9. Hinchliffe, P. and L.A. Sazanov, Organization of iron-
    sulfur clusters in respiratory complex I. Science, 2005.
    309(5735): p. 771-4.
    10. Ohnishi, T., Iron-sulfur clusters/semiquinones in
    complex I. Biochim Biophys Acta, 1998. 1364(2): p. 186-
    206.
    11. Hyslop, S.J., et al., Assignment of the PSST subunit
    gene of human mitochondrial complex I to chromosome
    19p13. Genomics, 1996. 37(3): p. 375-80.
    12. Sazanov, L.A. and P. Hinchliffe, Structure of the
    hydrophilic domain of respiratory complex I from Thermus
    thermophilus. Science, 2006. 311(5766): p. 1430-6.
    13. Ahlers, P.M., et al., Application of the obligate
    aerobic yeast Yarrowia lipolytica as a eucaryotic model
    to analyse Leigh syndrome mutations in the complex I
    core subunits PSST and TYKY. Biochim Biophys Acta, 2000.
    1459(2-3): p. 258-65.
    14. Duarte, M., et al., Disruption of iron-sulphur cluster
    N2 from NADH: ubiquinone oxidoreductase by site-directed
    mutagenesis. Biochem J, 2002. 364(Pt 3): p. 833-9.
    15. Copeland, J.M., et al., Extension of Drosophila life
    span by RNAi of the mitochondrial respiratory chain.
    Curr Biol, 2009. 19(19): p. 1591-8.
    16. Leigh, D., Subacute necrotizing encephalomyelopathy in
    an infant. J Neurol Neurosurg Psychiatry, 1951. 14(3):
    p. 216-21.
    17. Dahl, H.H., Getting to the nucleus of mitochondrial
    disorders: identification of respiratory chain-enzyme
    genes causing Leigh syndrome. Am J Hum Genet, 1998.
    63(6): p. 1594-7.
    18. Lebon, S., et al., A novel mutation of the NDUFS7 gene
    leads to activation of a cryptic exon and impaired
    assembly of mitochondrial complex I in a patient with
    Leigh syndrome. Mol Genet Metab, 2007. 92(1-2): p. 104-
    8.
    19. Sun, X., et al., Downregulation in components of the
    mitochondrial electron transport chain in the postmortem
    frontal cortex of subjects with bipolar disorder. J
    Psychiatry Neurosci, 2006. 31(3): p. 189-96.
    20. Kato, T., et al., Increased levels of a mitochondrial
    DNA deletion in the brain of patients with bipolar
    disorder. Biol Psychiatry, 1997. 42(10): p. 871-5.
    21. Iwamoto, K., M. Bundo, and T. Kato, Altered expression
    of mitochondria-related genes in postmortem brains of
    patients with bipolar disorder or schizophrenia, as
    revealed by large-scale DNA microarray analysis. Hum Mol
    Genet, 2005. 14(2): p. 241-53.
    22. Andreazza, A.C., et al., Mitochondrial complex I
    activity and oxidative damage to mitochondrial proteins
    in the prefrontal cortex of patients with bipolar
    disorder. Arch Gen Psychiatry, 2010. 67(4): p. 360-8.
    23. Knobloch, M. and I.M. Mansuy, Dendritic spine loss and
    synaptic alterations in Alzheimer's disease. Mol
    Neurobiol, 2008. 37(1): p. 73-82.
    24. O'Brien, R.J. and P.C. Wong, Amyloid precursor protein
    processing and Alzheimer's disease. Annu Rev Neurosci,
    2011. 34: p. 185-204.
    25. Liang, W.S., et al., Alzheimer's disease is associated
    with reduced expression of energy metabolism genes in
    posterior cingulate neurons. Proc Natl Acad Sci U S A,
    2008. 105(11): p. 4441-6.
    26. Frykman, S., et al., Identification of two novel
    synaptic gamma-secretase associated proteins that affect
    amyloid beta-peptide levels without altering Notch
    processing. Neurochem Int, 2012. 61(1): p. 108-18.
    27. Meluh, P.B. and D. Koshland, Evidence that the MIF2 gene
    of Saccharomyces cerevisiae encodes a centromere protein
    with homology to the mammalian centromere protein CENP-
    C. Mol Biol Cell, 1995. 6(7): p. 793-807.
    28. Shen, Z., et al., UBL1, a human ubiquitin-like protein
    associating with human RAD51/RAD52 proteins. Genomics,
    1996. 36(2): p. 271-9.
    29. Okura, T., et al., Protection against Fas/APO-1- and
    tumor necrosis factor-mediated cell death by a novel
    protein, sentrin. J Immunol, 1996. 157(10): p. 4277-81.
    30. Boddy, M.N., et al., PIC 1, a novel ubiquitin-like
    protein which interacts with the PML component of a
    multiprotein complex that is disrupted in acute
    promyelocytic leukaemia. Oncogene, 1996. 13(5): p. 971-
    82.
    31. Mahajan, R., et al., A small ubiquitin-related
    polypeptide involved in targeting RanGAP1 to nuclear
    pore complex protein RanBP2. Cell, 1997. 88(1): p. 97-
    107.
    32. Bayer, P., et al., Structure determination of the small
    ubiquitin-related modifier SUMO-1. J Mol Biol, 1998.
    280(2): p. 275-86.
    33. Melchior, F., SUMO--nonclassical ubiquitin. Annu Rev
    Cell Dev Biol, 2000. 16: p. 591-626.
    34. Guo, D., et al., A functional variant of SUMO4, a new I
    kappa B alpha modifier, is associated with type 1
    diabetes. Nat Genet, 2004. 36(8): p. 837-41.
    35. Desterro, J.M., et al., Identification of the enzyme
    required for activation of the small ubiquitin-like
    protein SUMO-1. J Biol Chem, 1999. 274(15): p. 10618-24.
    36. Hannoun, Z., et al., Post-translational modification by
    SUMO. Toxicology, 2010. 278(3): p. 288-93.
    37. Wilkinson, K.A. and J.M. Henley, Mechanisms, regulation
    and consequences of protein SUMOylation. Biochem J,
    2010. 428(2): p. 133-45.
    38. Saitoh, H. and J. Hinchey, Functional heterogeneity of
    small ubiquitin-related protein modifiers SUMO-1 versus
    SUMO-2/3. J Biol Chem, 2000. 275(9): p. 6252-8.
    39. Yang, S.H., et al., An extended consensus motif enhances
    the specificity of substrate modification by SUMO. EMBO
    J, 2006. 25(21): p. 5083-93.
    40. Hietakangas, V., et al., PDSM, a motif for
    phosphorylation-dependent SUMO modification. Proc Natl
    Acad Sci U S A, 2006. 103(1): p. 45-50.
    41. Gareau, J.R. and C.D. Lima, The SUMO pathway: emerging
    mechanisms that shape specificity, conjugation and
    recognition. Nat Rev Mol Cell Biol, 2010. 11(12): p.
    861-71.
    42. Kerscher, O., SUMO junction-what's your function? New
    insights through SUMO-interacting motifs. EMBO Rep,
    2007. 8(6): p. 550-5.
    43. Matic, I., et al., Site-specific identification of SUMO-
    2 targets in cells reveals an inverted SUMOylation motif
    and a hydrophobic cluster SUMOylation motif. Mol Cell,
    2010. 39(4): p. 641-52.
    44. Li, S.J. and M. Hochstrasser, The yeast ULP2 (SMT4) gene
    encodes a novel protease specific for the ubiquitin-like
    Smt3 protein. Mol Cell Biol, 2000. 20(7): p. 2367-77.
    45. Li, S.J. and M. Hochstrasser, A new protease required
    for cell-cycle progression in yeast. Nature, 1999.
    398(6724): p. 246-51.
    46. Hickey, C.M., N.R. Wilson, and M. Hochstrasser, Function
    and regulation of SUMO proteases. Nat Rev Mol Cell Biol,
    2012. 13(12): p. 755-66.
    47. Kolli, N., et al., Distribution and paralogue
    specificity of mammalian deSUMOylating enzymes. Biochem
    J, 2010.430(2): p. 335-44.
    48. Nacerddine, K., et al., The SUMO pathway is essential
    for nuclear integrity and chromosome segregation in
    mice. Dev Cell, 2005. 9(6): p. 769-79.
    49. Dieckhoff, P., et al., Smt3/SUMO and Ubc9 are required
    for efficient APC/C-mediated proteolysis in budding
    yeast. Mol Microbiol, 2004. 51(5): p. 1375-87.
    50. Vethantham, V., N. Rao, and J.L. Manley, Sumoylation
    regulates multiple aspects of mammalian poly(A)
    polymerase function. Genes Dev, 2008. 22(4): p. 499-511.
    51. Morita, Y., et al., TRAF7 sequesters c-Myb to the
    cytoplasm by stimulating its sumoylation. Mol Biol Cell,
    2005. 16(11): p. 5433-44.
    52. Verger, A., J. Perdomo, and M. Crossley, Modification
    with SUMO. A role in transcriptional regulation. EMBO
    Rep, 2003. 4(2): p. 137-42.
    53. Gill, G., Something about SUMO inhibits transcription.
    Curr Opin Genet Dev, 2005. 15(5): p. 536-41.
    54. Hong, Y., et al., Regulation of heat shock transcription
    factor 1 by stress-induced SUMO-1 modification. J Biol
    Chem, 2001. 276(43): p. 40263-7.
    55. Goodson, M.L., et al., Sumo-1 modification regulates the
    DNA binding activity of heat shock transcription factor
    2, a promyelocytic leukemia nuclear body associated
    transcription factor. J Biol Chem, 2001. 276(21): p.
    18513-8.
    56. Stielow, B., et al., SUMO-modified Sp3 represses
    transcription by provoking local heterochromatic gene
    silencing. EMBO Rep, 2008. 9(9): p. 899-906.
    57. Eloranta, J.J. and H.C. Hurst, Transcription factor AP-2
    interacts with the SUMO-conjugating enzyme UBC9 and is
    sumolated in vivo. J Biol Chem, 2002. 277(34): p. 30798-
    804.
    58. Seufert, W., B. Futcher, and S. Jentsch, Role of a
    ubiquitin-conjugating enzyme in degradation of S- and M-
    phase cyclins. Nature, 1995. 373(6509): p. 78-81.
    59. Shayeghi, M., et al., Characterisation of
    Schizosaccharomyces pombe rad31, a UBA-related gene
    required for DNA damage tolerance. Nucleic Acids Res,
    1997. 25(6): p. 1162-9.
    60. al-Khodairy, F., et al., The Schizosaccharomyces pombe
    hus5 gene encodes a ubiquitin conjugating enzyme
    required for normal mitosis. J Cell Sci, 1995. 108 ( Pt
    2): p. 475-86.
    61. Branzei, D., et al., Ubc9- and mms21-mediated
    sumoylation counteracts recombinogenic events at damaged
    replication forks. Cell, 2006. 127(3): p. 509-22.
    62. Galanty, Y., et al., Mammalian SUMO E3-ligases PIAS1 and
    PIAS4 promote responses to DNA double-strand breaks.
    Nature, 2009. 462(7275): p. 935-9.
    63. Gali, H., et al., Role of SUMO modification of human
    PCNA at stalled replication fork. Nucleic Acids Res,
    2012. 40(13): p. 6049-59.
    64. Eladad, S., et al., Intra-nuclear trafficking of the BLM
    helicase to DNA damage-induced foci is regulated by SUMO
    modification. Hum Mol Genet, 2005. 14(10): p. 1351-65.
    65. Altmannova, V., et al., Rad52 SUMOylation affects the
    efficiency of the DNA repair. Nucleic Acids Res, 2010.
    38(14): p. 4708-21.
    66. Lallemand-Breitenbach, V. and H. de The, PML nuclear
    bodies. Cold Spring Harb Perspect Biol, 2010. 2(5): p.
    a000661.
    67. Desterro, J.M., M.S. Rodriguez, and R.T. Hay, SUMO-1
    modification of IkappaBalpha inhibits NF-kappaB
    activation. Mol Cell, 1998. 2(2): p. 233-9.
    68. Klenk, C., et al., SUMO-1 controls the protein stability
    and the biological function of phosducin. J Biol Chem,
    2006. 281(13): p. 8357-64.
    69. Praefcke, G.J., K. Hofmann, and R.J. Dohmen, SUMO
    playing tag with ubiquitin. Trends Biochem Sci, 2012.
    37(1): p. 23-31.
    70. Hay, R.T., SUMO: a history of modification. Mol Cell,
    2005. 18(1): p. 1-12.
    71. Martin, S., et al., SUMOylation regulates kainate-
    receptor-mediated synaptic transmission. Nature, 2007.
    447(7142): p. 321-5.
    72. Hardeland, U., et al., Modification of the human
    thymine-DNA glycosylase by ubiquitin-like proteins
    facilitates enzymatic turnover. EMBO J, 2002. 21(6): p.
    1456-64.
    73. Harder, Z., R. Zunino, and H. McBride, Sumo1 conjugates
    mitochondrial substrates and participates in
    mitochondrial fission. Curr Biol, 2004. 14(4): p. 340-5.
    74. Figueroa-Romero, C., et al., SUMOylation of the
    mitochondrial fission protein Drp1 occurs at multiple
    nonconsensus sites within the B domain and is linked to
    its activity cycle. FASEB J, 2009. 23(11): p. 3917-27.
    75. Guo, C., et al., SENP3-mediated deSUMOylation of
    dynamin-related protein 1 promotes cell death following
    ischaemia. EMBO J, 2013. 32(11): p. 1514-28.
    76. Rytinki, M.M. and J.J. Palvimo, SUMOylation attenuates
    the function of PGC-1alpha. J Biol Chem, 2009. 284(38):
    p. 26184-93.
    77. Cai, R., et al., SUMO-specific protease 1 regulates
    mitochondrial biogenesis through PGC-1alpha. J Biol
    Chem, 2012. 287(53): p. 44464-70.
    78. Pichler, A., et al., SUMO modification of the ubiquitin-
    conjugating enzyme E2-25K. Nat Struct Mol Biol, 2005.
    12(3): p. 264-9.
    79. Jang, M.S., S.W. Ryu, and E. Kim, Modification of Daxx
    by small ubiquitin-related modifier-1. Biochem Biophys
    Res Commun, 2002. 295(2): p. 495-500.
    80. Xu, K., et al., Modification of nonstructural protein 1
    of influenza A virus by SUMO1. J Virol, 2011. 85(2): p.
    1086-98.
    81. Hoege, C., et al., RAD6-dependent DNA repair is linked
    to modification of PCNA by ubiquitin and SUMO. Nature,
    2002. 419(6903): p. 135-41.
    82. Mukhopadhyay, A., et al., Precursor protein is readily
    degraded in mitochondrial matrix space if the leader is
    not processed by mitochondrial processing peptidase. J
    Biol Chem, 2007. 282(51): p. 37266-75.
    83. Felipo, V. and S. Grisolia, Precursors of mitochondrial
    proteins are degraded in the cytosol at different rates.
    FEBS Lett, 1986. 209(2): p. 227-30.
    84. Kim, M.J., I.V. Chia, and F. Costantini, SUMOylation
    target sites at the C terminus protect Axin from
    ubiquitination and confer protein stability. FASEB J,
    2008. 22(11): p. 3785-94.
    85. de Cristofaro, T., et al., Pax8 protein stability is
    controlled by sumoylation. J Mol Endocrinol, 2009.
    42(1): p. 35-46.
    86. Koc, E.C. and H. Koc, Regulation of mammalian
    mitochondrial translation by post-translational
    modifications. Biochim Biophys Acta, 2012. 1819(9-10):
    p. 1055-66.
    87. Meulmeester, E., et al., Mechanism and consequences for
    paralog-specific sumoylation of ubiquitin-specific
    protease 25. Mol Cell, 2008. 30(5): p. 610-9.
    88. Lin, D.Y., et al., Role of SUMO-interacting motif in
    Daxx SUMO modification, subnuclear localization, and
    repression of sumoylated transcription factors. Mol
    Cell, 2006. 24(3): p. 341-54.
    89. Vanhatupa, S., et al., MAPK-induced Ser727
    phosphorylation promotes SUMOylation of STAT1. Biochem
    J, 2008. 409(1): p. 179-85.
    90. Terui, Y., et al., Dual role of sumoylation in the
    nuclear localization and transcriptional activation of
    NFAT1. J Biol Chem, 2004. 279(27): p. 28257-65.
    91. Stahl, A., et al., Rapid degradation of the presequence
    of the f1beta precursor of the ATP synthase inside
    mitochondria. Biochem J, 2000. 349 Pt 3: p. 703-7.
    92. Kim, W., et al., Systematic and quantitative assessment
    of the ubiquitin-modified proteome. Mol Cell, 2011.
    44(2): p. 325-40.
    93. Zhang, F.P., et al., Sumo-1 function is dispensable in
    normal mouse development. Mol Cell Biol, 2008. 28(17):
    p. 5381-90.
    94. Zhong, S., et al., Role of SUMO-1-modified PML in
    nuclear body formation. Blood, 2000. 95(9): p. 2748-52.
    95. Weisshaar, S.R., et al., Arsenic trioxide stimulates
    SUMO-2/3 modification leading to RNF4-dependent
    proteolytic targeting of PML. FEBS Lett, 2008. 582(21-
    22): p. 3174-8.
    96. Chou, T. F. (2009) Human mitochondrial complex I NDUFS7
    subunits has a dual distribution both in mitochondria
    and nuclei. Master Thesis, National Ting Hua University.
    97. Jaokar TM, Sharma R, Suresh CG (2013) Structural Effects
    of Leigh Syndrome Mutations on the Function of Human
    MitochondrialComplex-I Q module. Biochem Physiol S2.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE