研究生: |
連智華 Lien, Jr-Hua |
---|---|
論文名稱: |
黑洞熵:彎曲時空量子場論,全息對偶與量子信息 Black Hole Entropy: Quantum Field in Curved Spacetime, Holographic Duality and Quantum Information |
指導教授: |
朱創新
Chu, Chong-Sun |
口試委員: |
陳江梅
Chen, Chiang-Mei 溫文鈺 Wen, Wen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 黑洞 、黑洞熵 、霍金輻射 、彎曲時空量子場 、全息對偶 、量子信息 |
外文關鍵詞: | black hole, black hole entropy, Hawking radiation, quantum field in curved spacetime, holographic duality, quantum information |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理論物理學中最困難和最根本性的未解決問題之一是量子重力,許多人認為 研究黑洞的量子性質是其中一條通往量子重力的道路,而黑洞熵是在黑洞的量子 性質中最重要的研究方向之一。
雖然黑洞熵是一個宏觀物理量,但普遍認為它應該具有量子層面的起源,過 去已有許多理論試圖給出黑洞熵的微觀解釋,我們也希望透過研究黑洞熵的量子 起源,來幫助人們理解時空的量子結構以及量子重力。
本篇論文主要回顧了幾個關於理論物理學中黑洞熵的重要研究,包括廣義相 對論中的黑洞力學、霍金-貝肯斯坦溫度及其相對應的黑洞熵、磚牆法計算出的黑 洞熵,接著回顧近年來由弦論所啟發,關於全像對偶架構下的黑洞熵計算,如極 端克爾黑洞和共形場對應、黑洞時空相關的反德西特時空與共形場對應、黑洞時 空中的量子信息,並計算黑洞時空中量子場的糾纏熵,最後給出動態黑洞下量子 糾纏熵隨黑洞的變化關係。
此外,熵在經典和量子信息理論中具有自然且漂亮的意義,並已長久用於電 腦科學和通信技術,然而,熵在這些面向的意義似乎尚未具體的引入到黑洞物理 學的研究中。我們將古典與量子信息理論中關於熵的內容作為黑洞熵回顧的一部 分。
One of the most difficult and fundamental open problems in theoretical physics is quantum gravity, many people believe that the study of the quantum properties of the black hole is a road toward quantum gravity. The black hole entropy is one of the most important topics in this direction.
There were many theories to give the microscopic explanation of the black hole entropy, although the black hole entropy as a macroscopic physical quantity, we believe that it should have a quantum level origin so that we could understand the quantum structure of spacetime.
In this thesis, we essentially review several important research about the black hole entropy in the history of physics, including the classical black hole mechan- ics theory of general relativity, the Hawking temperature, the Hawking-Bekenstein entropy, the brick wall method, and then we review the related modern results of the black hole entropy in the context of holographic dualities, such as black hole and conformal field correspondence (Kerr/CFT), and AdS/CFT correspondence and quantum information related to the black hole spacetime. In the last chapter, we calculate the entanglement entropy of quantum field in the black hole spacetime and give the relation for dynamical black hole and entanglement entropy.
In addition, the entropy has nature explanation in classical and quantum in- formation theory and used in the computer science and communication technology. However, the interpretation of this aspect for entropy seems not to appear in the study of black hole physics yet. We put those materials about information theory in this thesis as a part of the review about the black hole entropy.
[1] Robert M. Wald. General Relativity. University of Chicago Press, 1984.
[2] Eric Poisson. A Relativist’s Toolkit The Mathematics of Black Hole Mechanics.
cambridge, 2004.
[3] P.K. Townsend. Black holes.
[4] S.W. Hawking. Particle creation by black holes. Commun. math. Phys., 1975.
[5] Alessandro Fabbri and Jose Navarro-Salas. Modeling Black Hole Evaporation. World Scientific Pub Co Inc, 2005.
[6] David McMahon Paul M. Alsing. Teleportation in a non-inertial frame. 2003.
[7] I. Fuentes-Schuller and R. B. Mann. Alice falls into a black hole: Entanglement
in noninertial frames. Physical Review Letters, 95(12):1–5, 2005.
[8] Shen You-Gen Xian-Hui Ge. Quantum teleportation and kerr newman space-
time. Chinese Physics, 2005.
[9] Chiang-Mei Chen I-Chieh Lin. Spontaneous pair production in reissner-
nordstrom black holes. 2012.
[10] Jacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333– 2346, 1973.
[11] Gerard ”t HOOFT. On the quantum structure of a black hole. Nuclear Physics, 1985.
[12] Ralph J.K. Metzler (Editor) Friedrich W Hehl (Editor), Claus Kiefer (Editor), editor. Black Holes: Theory and Observation: Proceedings of the 179th W.E. Heraeus Seminar Held at Bad Honnef, Germany, 18–22 August 1997 (Lecture Notes in Physics). Springer, 1998 edition (December 17, 1998).
[13] Liu Wenbiao and Zhao Zheng. Entropy of the Dirac field in a Kerr-Newman black hole. Physical Review D - Particles, Fields, Gravitation and Cosmology, 61(6):1–7, 2000.
[14] Jeongwon Ho, Won T. Kim, Young Jai Park, and Hyeonjoon Shin. Entropy in the Kerr-Newman black hole. Classical and Quantum Gravity, 14(9):2617–2625, 1997.
[15] H. El Moumni L. Medari M. B. Sedra A. Belhaj, M. Chabab. On thermody- namical behaviors of kerr-newman ads black holes. 2013.
[16] S. Chandrasekhar. The Mathematical Theory of Black Holes. Clarendon Press, 1998.
[17] V. Frolov I. Novikov. Black Hole Physics: Basic Concepts and New Develop- ments. Springer, 2008.
[18] Wei Song Andrew Strominger Monica Guica, Thomas Hartman. The kerr/cft correspondence. 2008.
[19] Lectures on the Kerr/CFT Correspondence. Irene bredberg, cynthia keeler, vyacheslav lysov, andrew strominger. 2011.
[20] Andrew Strominger Alejandra Castro, Alexander Maloney. Hidden conformal symmetry of the kerr black hole. 2010.
[21] Andrew Strominger. Microscopic origin of the bekenstein-hawking entropy. 1996.
[22] Andrew Strominger. Black hole entropy from near–horizon microstates. 1998.
[23] Megha Padi Wei Song Andrew Strominger Dionysios Anninos, Wei Li. Warped ads3 black holes.
[24] Andrew Strominger Marcus Spradlin. Vacuum states for ads2 black holes. 1999.
[25] Gary T. Horowitz James Bardeen. The extreme kerr throat geometry a vacuum analog of ads2 s2. 1999.
[26] Marc Henneaux J. D. Brown. Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commu- nications in Mathematical Physics, Comm. Math. Phys., Volume 104, Number 2 (1986), 207-226., 1986.
[27] Juan Maldacena. The large N Limit of superconformal field theories and su- pergravity. Advances in Theoretical and Mathematical Physics, 2(2):231–252, 1998.
[28] Tadashi Takayanagi Shinsei Ryu. Holographic derivation of entanglement en- tropy from ads/cft. 2006.
[29] Ning Bao and Hirosi Ooguri. Distinguishability of black hole microstates. Phys- ical Review D, 96(6), 2017.
[30] Federico Galli Curtis T. Asplund, Alice Bernamonti and Thomas Hart- man. Holographic entanglement entropy from 2d cft: Heavy states and local quenches. 2014.
[31] Eduardo Mart ́ın-Mart ́ınez, Ivette Fuentes, and Robert B. Mann. Relativistic Quantum Information, Developments in Quantum Information in general rel- ativistic scenarios. PhD thesis, 2011.
[32] Dominic Jason Hosler. Relativistic Quantum Communication. PhD thesis, The University Of Sheffield, 2013.
[33] Maki Takahashi. Studies in relativity and quantum information theory. PhD thesis, The University of Sydney, 2013.
[34] Daniel Harlow. Jerusalem lectures on black holes and quantum information. 2015.
[35] Akira Matsumura Tomoro Tokusumi and Yasusada Nambu. Quantum circuit model of black hole evaporation. Classical and Quantum Gravity, 12 November 2018.
[36] Barrett O’Neill. Semi-Riemannian Geometry With Applications to Relativity. Academic Press, 1983.
[37] Adrien Fiorucci Geoffrey Comp`ere. Advanced lectures on general relativity. 2018.
[38] MARK M. WILDE. Quantum Information Theory. Cambridge University Press, 2017.
[39] Isaac L. Chuang Michael A. Nielsen. Quantum Computation and Quantum Information. Cambridge University Press; Anniversary edition, 2011.