簡易檢索 / 詳目顯示

研究生: 歐燕玉
Yen-Yu Ou
論文名稱: 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
Synthesis of Vertically Aligned Carbon Nanotubes and Carbon Nanotube-Gold Nanoparticle Composites and Spectral Analysis
指導教授: 黃暄益
Michael Hsuan-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 78
中文關鍵詞: 奈米碳管化學氣相沉積法金奈米粒子複合物
外文關鍵詞: carbon nanotubes, CVD, gold nanoparticles, composites
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管為一維奈米材料,具有低密度、高機械強度、導電性等特性,自1991年被日本NEC公司研究員飯島澄男發現以來,即被視為構造奈米元件的潛力材料之一,其應用有微型化電子元件、掃瞄式探針和碳管複合物等。
    本研究中以化學氣相沉積法合成出多層奈米碳管,與電弧放電法、雷射激發法比較起來,其具有裝置簡易、反應溫度較低、產率高、費用便宜等優點。首先,以濺鍍10-nm鐵膜的矽晶片為基板,在氬氣氣氛下升高溫度至 800-950 °C,在升溫至反應溫度後,即通入乙炔氣體,在高溫下乙炔會裂解成碳和氫,其中碳與催化劑鐵形成碳化鐵合金,而後碳因飽和而析出生成垂直式奈米碳管。實驗合成之碳管樣品,以掃瞄式電子顯微鏡、穿透式電子顯微鏡、拉曼光譜分析碳管的結構與成長特性,並討論改變反應時間、溫度、前處理時間及乙炔/氬氣之比例對生成碳管的直徑和成長速率之影響。
    濺鍍5-nm鐵膜的矽晶片和以氯化鐵溶液旋轉塗佈之矽晶片用以探討以氨氣和氬氣為載氣對合成垂直式奈米碳管的影響。實驗結果顯示,當以5-nm鍍鐵薄膜矽晶片為催化劑基板時,反應條件為 750 °C和5%乙炔,在氨氣和氬氣的氣氛下均可合成出垂直式奈米碳管,且於氬氣氣氛下合成之碳管長度較氨氣氣氛者長。而當催化劑轉為在矽晶片上旋轉塗佈氯化鐵溶液時,在750 °C和5%乙炔反應條件下,由掃瞄式電子顯微鏡圖片發現氨氣氣氛較能促進垂直式奈米碳管的成長。以氯化鐵為催化劑,在氬氣氣氛下,需提高反應溫度至800 °C及乙炔/氬氣之比例至6.6%,垂直式碳管才可被合成出來。
    碳管-奈米粒子複合物在催化、電子、光電、磁性物質、生化感測等有多方面的用途,許多合成此類的複合物的方法均已被提出,利用碳管表面的非共價鍵結可避免改變碳管原本之電子結構,然而奈米粒子表面常須自組裝薄膜保護以避免官能基化時所造成的凝聚,本文研究發現利用氫氧化鈉調整金奈米粒子溶液的pH值即可在官能基化時有效避免此現象。
    本篇論文中,成功利用含胺基的多環芳香烴結合直徑約3 nm的金奈米粒子,再藉由苯環與碳管的π-π相互作用,使官能基化的金奈米粒子吸附至碳管管壁。金奈米粒子在胺化或硫醇化時,常因表面電荷中和而凝聚,本實驗中於金奈米粒子溶液中加入少量的氫氧化鈉可有效避免金奈米粒子在胺化時產生的聚集現象。實驗生成之金奈米粒子-碳管複合物,以穿透式電子顯微鏡分析其結構,可看到直徑約3 nm的金奈米粒子均勻地附著於碳管管壁,並以紫外線-可見光吸收光譜和螢光放射光譜鑑定其特性。由紫外線-可見光吸收光譜芘基之特性吸收和螢光放射光譜結果,我們可以進一步確認金奈米粒子與1-芘基甲基胺及芘基與碳管間電子的交互作用。由芘基之螢光放射光譜的放光峰III與放光峰I的強度比值可看出當金奈米粒子結合到碳管表面時,隨著反應時間變長而強度比值變大,表示反應後的芘基處於非極性的環境,更一步證實了其附著於碳管表面。


    Carbon nanotubes are ideal model systems for studying the physics in one-dimensional nanomaterials and have significant potential as building blocks for various practical nanoscale electronic devices. It has been shown that carbon nanotubes could be useful for miniaturized electronic, mechanical, electromechanical, chemical and scanning probe devices and materials for macroscopic composites.
    In this investigation, we synthesized aligned carbon nanotubes on 10-nm iron thin films by chemical vapor deposition using acetylene as the carbon source, and compared the ranges of nanotube lengths and diameters grown by different reaction conditions. Under both ammonia and argon environments, dense arrays of well aligned multi-walled carbon nanotubes could be synthesized at 750 °C with 5 % acetylene. Significantly better vertical CNT alignment was observed in NH3 environment than in argon using substrates spin-coated with iron chloride solution as catalyst. SDS plays an important role by making the catalyst particles from iron chloride solution well dispersed on the substrates. Using substrates spin-coated with iron chloride solution as catalyst, vertically aligned carbon nanotubes could be synthesized in argon until the reaction temperature is raised to 800 °C with 6.6 % acetylene.
    Various approaches for preparing CNT/nanoparticle composites have been demonstrated. Nanoparticle-decorated nanotube heterostructures may have catalytic, electronic, optical, and magnetic applications. We have succeeded to use amine group-terminated mono- and polycyclic molecules to attach gold nanoparticles onto the surface of multi-walled carbon nanotubes through π-π interactions. Addition of a small amount of NaOH in the solution can prevent aggregation of gold nanoparticles. On the basis of UV–vis absorption studies, it is concluded that there is a strong ground state interaction between the plasmon electrons of Au nanoparticles and the π-electron cloud of 1-pyrenemethylamine. Fluorescence monitoring further confirms the presence of charge transfer and energy transfer between 1-pyrenemethylamine and gold nanoparticles and the π-π interactions between 1-pyrenemethylamine and carbon nanotubes. Similar approach can be applied to other polycyclic aromatic compounds.

    TABLE OF CONTENTS Abstract of the Thesis……………………………………………………………………. I Acknowledgements……………………………………………………………………… IV Table of contents………………………………………………………………………… V List of Figures…………………………………………………………………………… XI List of Tables…………………………………………………………………………….. XII CHAPTER 1 AN OVERVIEW OF CARBON NANOTUBES 1-1 Introduction 01 1-2 What are Carbon Nanotubes? 01 1-3 Properties of Carbon Nanotubes 04 1-3.1 Mechanical Properties 04 1-3.2 Electrical Properties 05 1-3.3 Field Emission 06 1-3.4 Thermal conductivity 08 1-3.5 Thermal stability 09 1-4 Synthesis of Carbon Nanotubes 10 1-4.1 Arc Discharge 11 1-4.2 Laser Ablation 11 1-4.3 Chemical Vapor Deposition 12 1-4.4 Growth Mechanism of Carbon Nanotube 13 1-5 Patterned Growth of Nanotubes 17 1-5.1 Ordered Arrays of Multiwalled Nanotubes 17 1-5.2 Ordered Networks of Suspended Single-Walled Nanotubes 20 1-5.3 Electric-Field-Directed Nanotube Growth 22 1-5.4 Gas-Flow-Directed Nanotube Growth 23 1-6 Chemically Functionalized Carbon nanotubes 24 1-6.1 Defect-Group Functionalization 25 1-6.2 Covalent Sidewall Functionalization 27 1-6.3 Noncovalent Exohedral Functionalization 28 1-6.4 Endoohedral Functionalization 29 1-6.5 Attach Nanoparticles to Carbon Nanotubes 30 1-7 References 33 CHAPTER 2 SYNTHESIS OF VERTICALLY ALIGNED CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION 2-1 Introduction 34 2-2 Experimental Section 36 2-2.1 Apparatus 36 2-2.2 Preparation of Catalyst 37 2-2.3 Synthesis of Vertically Aligned Carbon Nanotubes 37 2-3 Result and Discussion 38 2-3.1 Morphology and the Growth Rate 38 2-3.2 Structure and Crystallinity of Synthesized Carbon Nanotubes 42 2-3.3 Effects of Reaction Temperature 46 2-3.4 Effects of Ammonia Atmosphere during Nanotube Growth 48 2-4 Summary 54 2-5 References 55 CHAPTER 3 ATTACH GOLD NANOPARTICLES TO CARBON NANOTUBES 3-1 Introduction 57 3-2 Experimental Section 59 3-2.1 Synthesis of Gold Seed 59 3-2.2 Attachment of Gold Nanoparticles to Carbon Nanotubes 59 3-2.2.1 Attachment of Gold Nanoparticles to Carbon Nanotubes Using Polycyclic Interlinkers 59 3-2.2.2 Formation of Gold Nanoparticle-Pyrenemethylamine-CNT Composite and Analysis 60 3-3 Result and Discussion 62 3-3.1 Attachment of Gold Nanoparticles to Carbon Nanotubes Using Polycyclic Interlinkers 62 3-3.2 Formation of Gold Nanoparticle-Pyrenemethylamine-CNT Composite and Analysis 67 3-3.3 Additional Experiments on Gold Nanoparticle-1-Pyrenemethylamine- CNT Composite Without Addition of NaOH 75 3-4 Conclusion 76 3-5 References 77 LIST OF FIGURES CHAPTER 1 AN OVERVIEW OF CARBON NANOTUBES Figure 1.1 Schematic representation of single-/multi-walled carbon nanotube formation by rolling up graphene sheet(s). 01 Figure 1.2 Carbon nanotubes imaged by transmission electron microscopy (TEM). 02 Figure 1.3 Schematic representation of carbon nanotube formation based on a 2D graphene sheet of lattice vectors a1 and a2. 03 Figure 1.4 Schematic structures of armchair, zigzag, and chiral SWNTs. 04 Figure 1.5 Schematic structures of SWNTs and how they determine the electronic properties of the nanotubes. 06 Figure 1.6 Schematic of a Spindt cathode array. 07 Figure 1.7 Thermal conductivity of carbon nanotubes of different diameters. 08 Figure 1.8 Weight loss curves for raw MWNTs, diamond, annealed diamond, graphite, annealed MWNTs and annealed graphite. 09 Figure 1.9 TGA weight loss curves of SWNTs (raw), C60s, and peapods. 10 Figure 1.10 Schematic drawing of arc discharge method for producing CNTs. 11 Figure 1.11 Schematic representation of the oven laser-vaporization apparatus. 12 Figure 1.12 Schematic representation of the experimental setup used for the catalytic decomposition of hydrocarbons. 13 Figure 1.13 Growth mechanism of carbon nanotube. 14 Figure 1.15 Schematic representation of the tip-growth mechanism of CNTs. 16 Figure 1.16 SEM micrograph of carbon nanotubes aligned perpendicular to the substrate over large areas. 17 Figure 1.17 Procedure for the patterned growth of carbon nanotubes by micro-contact printing. 18 Figure 1.18 SEM images of letters and Arabic numerals consisting of vertically aligned carbon nanotubes. 18 Figure 1.19 Schematic illustration of the procedure for the growth of 3-D CNT architectures and SEM images. 19 Figure 1.20 Schematic procedures for directed growth of suspended SWNTs. 20 Figure 1.21 SEM image of a suspended SWNT power line and a square of suspended SWNT bridges. 21 Figure 1.22 Fe/SBA-16 thin film showing parallel CNTs growing across the microcrack, perpendicular to the direction of the trench. 21 Figure 1.23 Schematic diagram of process flow for electric-field-directed growth of SWNTs. 22 Figure 1.24 SEM images of suspended SWNTs grown in various electric fields. 22 Figure 1.25 SEM images of SWNTs prepared using normal heating and fast heating processes. 23 Figure 1.26 SEM images of directly grown 2D network of SWNTs. 23 Figure 1.27 Functionalization possibilities for SWNTs: 24 Figure 1.28 Typical defects in a SWNT. 25 Figure 1.29 Chemical modification of nanotubes through thermal oxidation, followed by subsequent esterification or amidization. 26 Figure 1.30 Overview of possible addition reactions for the functionalization of the nanotube sidewall. 27 Figure 1.31 Functionalization of the sidewall through nucleophilic substitution reactions in fluorinated nanotubes. 28 Figure 1.32 Structure of N-succinimidyl-1-pyrenebutanoate. 29 Figure 1.33 TEM image of peapods. 30 Figure 1.34 TEM images of SWNTs immobilized with ferritin and streptavidin-Au. 31 Figure 1.35 Schematic view of the process for anchoring gold nanoparticles to CNx nanotubes. 32 Figure 1.36 TEM photograph of gold nanoparticle-CNx nanotube hybrid structures. 32 CHAPTER 2 SYNTHESIS OF VERTICALLY ALIGNED CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION Figure 2.1 Schematic diagram of reactor for carbon nanotube growth. 36 Figure 2.2 Structure of sodium dodecyl sulfate. 37 Figure 2.3 SEM images of vertically aligned carbon nanotubes. 40 Figure 2.4 TEM images of as-synthesized CNTs synthesized under vacuum. 43 Figure 2.5 Electron energy loss spectrum (EELS) of the as-synthesized CNTs. 44 Figure 2.6 Raman spectra of carbon nanotubes synthesized under vacuum and in atmosphere pressure. 45 Figure 2.7 SEM images of carbon nanotubes synthesized at 780 °C without pretreatment time and with 30 minutes of pretreatment time. 47 Figure 2.8 SEM images of aligned CNTs synthesized in ammonia and argon atmosphere using silicon substrates sputtered with 5-nm iron thin films. 49 Figure 2.9 High-magnification SEM images of same carbon nanotube samples shown in Figure 2.8. 50 Figure 2.10 SEM images of CNTs grown using iron chloride as the catalyst at 750 -800 °C with C2H2/NH3 or C2H2/Ar for 30 minutes. 53 CHAPTER 3 ATTACH GOLD NANOPARTICLES TO CARBON NANOTUBES Figure 3.1 Structures of 1-pyrenemethylamine, N-(1-naphthyl)ethylenediamine, phenethylamine and sodium citrate. 61 Figure 3.2 TEM images of Au nanoparticles attached to CNTs using mono- and polycyclic aromatic compounds as interlinkers. 64 Figure 3.3 High-resolution TEM image and energy dispersive X-ray spectrum (EDX) of the same sample as that shown in Figure 3.2a. 65 Figure 3.4 TEM images of carbon nanotubes attached with gold nanoparticles using phenethylamine sulfate as interlinker. 66 Figure 3.5 The illustration of the self-assembling process of gold nanoparticles with carbon nanotubes through 1-pyrenemethylamine. 67 Figure 3.6 UV–vis absorption spectra of CNTs attached with Au seed solution by 1-pyrenemethylamine with sodium hydroxide. The concentration of 1-pyrenemethylamine in the solution is 24 μM. 68 Figure 3.7 TEM image and a high-magnification view of CNTs attached with Au seed particles through 1-pyrenemethylamine. The concentration of 1-pyrenemethylamine in the solution is 24 μM. 70 Figure 3.8 Photoluminescence spectra of 1-pyrenemethylamine (24 μM) in the Au seed solution and 1-pyrenemethylamine (24 μM) after linking with both CNTs and Au seed particles. 72 Figure 3.9 Photoluminescence spectra of a solution of 1-pyrenemethylamine (90 μM) attached to CNTs and Au nanoparticles for 6, 12, 24 and 48 hours. 74 Figure 3.10 UV–vis absorption spectra of gold seed solution and gold seed solution mixed with 1-pyrenemethylamine (2 □M) for 4 hours. 75 Figure 3.11 UV–vis absorption spectra of Au seed solution directly mixed with 1-pyrenemethylamine (2 □M). 76 LIST OF TABLES CHAPTER 1 AN OVERVIEW OF CARBON NANOTUBES Table 1.1 Young’s modulus and tensile strength of different materials. 05 Table 1.2 Electron field emission characteristics of typical emissive materials. 07 Table 1.3 Overview of the important synthesis procedures for single-walled carbon nanotubes. 10 CHAPTER 2 SYNTHESIS OF VERTICALLY ALIGNED CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION Table 2.1 The reaction conditions and results. 39 Table 2.2 ID/IG ratios for different reaction temperature conditions. 44 CHAPTER 3 ATTACH GOLD NANOPARTICLES TO CARBON NANOTUBES Table 3.1 The intensity ratios of fluorescence peak III to peak I for 1-pyrenemethylamine under different conditions. 73 Table 3.2 The intensity ratios of band III/I of 1-pyrenemethylamine (90μM) attached to both CNTs and Au nanoparticles with different reaction times. 74

    CHAPTER 1 AN OVERVIEW OF CARBON NANOTUBES
    (1) Iijima, S. Nature 1991, 354, 56.
    (2) Dai, L.; Patil, A.; Gong, X.; Guo, Z.; Liu, L.; Liu, Y.; Zhu, D. Chem. Phys. Chem. 2003, 4, 1150.
    (3) Dai, H. Surface Science 2002, 500, 218.
    (4) Lau, K. T.; Hui, D. Composites: Part B 2002, 33,263.
    (5) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.
    (6) Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. Journal of Physics and Chemistry of Solids 2000, 61, 1153.
    (7) 鄭凱文,國立東華大學材料科學與工程研究所碩士論文,第8頁,民國九十一年。
    (8) Jang, J. W.; Lee, D. K.; Lee, C. E.; Lee, T. J.; Lee, C. J.; Noh, S. J. Solid State Commun. 2002, 122, 619.
    (9) Tekleab, D.; Czerw, R.; Carroll, D. L.; Ajayan, P. M. Appl. Phys. Lett. 2000, 76, 3594.
    (10) Dai, H. Acc. Chem. Res. 2002, 35, 1035.
    (11) Spindt, C. A.; Holland, C. E.; Rosengreen, A.; Brodie, I. J. Vac. Sci. Technol. B 1993, 11, 468.
    (12) Zhou, O.; Shimoda, H.; Gao, B,; Oh, S,; Flemig, L.; Yue, G. Acc. Chem. Res. 2002, 35, 1045
    (13) Tersoff, J. Phys. Rev. Lett. 1998, 61, 2879.
    (14) Brenner, D. W. Phys. Rev. B 1990, 42, 9458.
    (15) Osman, M. A.; Srivastava, D. Nanotechnology 2001, 12, 21.
    (16) Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, M. S.; Selegue, J. P. Nano. Lett. 2002, 2, 615.
    (17) Zhang, M.; Yudasaka, M.; Bandow, S.; Iijima, S. Chem. Phys. Lett. 2003, 369, 680.
    (18) Balasubramanian, K.; Burghard, M. Small 2005, 1, 180.
    (19) Wiles, P. G.; Abrahamson, J. Carbon 1978, 16, 341.
    (20) Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
    (21) Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R. E. Chem. Phys. Lett. 1995, 243, 49.
    (22) Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996; 273, 483.
    (23) Journet, C.; Bernier, P. Appl. Phys. A 1998, 67, 1.
    (24) Oberlin A.; Endo, M. J. Cryst. Growth 1976, 32, 335.
    (25) Baker, R. T. K. Carbon 1989, 27, 315.
    (26) Lee, C. J.; Park, J. Appl. Phys. Lett. 2000, 77, 3397.
    (27) Tanemura, M.; Iwata, K.; Takahashi, K.; Fujimoto, Y.; Okuyama, F.; Sugie, H.; Filip, V. J. Appl. Phys. 2001, 90, 1529.
    (28) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N.; Science 1998, 282, 1105.
    (29) Hu, M.; Murakami, Y.; Ogura, M.; Maruyama, S.; Okubo, T. Journal of Catalysis 2004, 225, 230.
    (30) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701.
    (31) Huang, S.; Dai, L.; Mau, A. W. H. J. Phys. Chem. B 1999, 103, 4223.
    (32) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Provencio, M. P. Science 1998, 282, 1105.
    (33) Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.; Ogura, M.; Okubo, T.; Maruyama, S. Chem. Phys. Lett. 2004, 385, 298.
    (34) Hou, H.; Schaper, A. K.; Weller, F.; Greiner, A. Chem. Mater. 2002, 14, 3990.
    (35) Kind, H.; Bonard, J.-M.; Forro, L.; Kern, K.; Hernadi, K.; Nilsson, L.-O.; Schlapbach, L. Langmuir 2000, 16, 6877.
    (36) Pan, Z.; Zhu, H.; Zhang, Z.; Im, H. j.; Dai, S.; Beach, D. B.; Lowndes, D. H. J. Phys. Chem. B 2003, 107, 1338.
    (37) Yang, Y.; Huang, S.; He, H.; Mau, A. W. H.; Dai, L. J. Am. Chem. Soc. 1999, 121, 10832.
    (38) Huang, S.; Mau, A. W. H.; Turney, T. W.; White, P. A.; Dai, L. J. Phys. Chem. B 2000, 104, 2193.
    (39) Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Chem. Mater. 2003, 15, 1598.
    (40) Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512.
    (41) Huang, S.; Mau, A. W. H. J. Phys. Chem. B 2003, 107, 8285.
    (42) Wang, X. B.; Liu, Y. Q.; Hu, P. A.; Yu, G.; Xiao, K.; Zhu, D. B. Adv. Mater. 2002, 14, 1557.
    (43) Cao, A.; Baskaran, R.; Frederick, M. J.; Turner, K.; Ajayan, P. M.; Ramanath, G. Adv. Mater. 2003, 15, 1105.
    (44) Cassell, A. M.; Franklin, N. R.; Tombler, T. W.; Chan, E. M.; Han, J.; Dai, H. J. Am. Chem. Soc. 1999, 121, 7975.
    (45) Franklin N. R.; Dai, H. Adv. Mater. 2000, 12, 890.
    (46) Jung, Y. J.; Homma, Y.; Vajtai, R.; Kobayashi, Y.; Ogino, T.; Ajayan, P. M. Nano Lett. 2004, 4, 1109.
    (47) Huang, L. Wind, S. J.; O’Brien, S. P. Nano Lett. 2003, 3,299.
    (48) Zhang, Y.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. Appl. Phys. Lett. 2001, 79, 3155.
    (49) Huang, S.; Maynor, B.; Cai, X.; Liu, J. Adv. Mater. 2003, 15, 1651.
    (50) Huang, S.; Cai, X.; Du, C.; Liu, J. J. Phys. Chem. B 2003, 107, 13251.
    (51) Huang, S.; Woodson, M.; Smalley, R. E.; Liu, J. Nano Lett., 2004, 4, 1025.
    (52) Huang, S.; Cai, X.; Liu, J. J. Am. Chem. Soc. 2003, 125, 5636.
    (53) Hirsch, A. Angew. Chem. Int. Ed. 2002, 41, 1853.
    (54) Satishkumar, B. C.; Vog, E. M.; Govindaraj, A.; Rao, C. N. R. J. Phys. D: Appl. Phys. 1996, 29, 3173.
    (55) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.
    (56) Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K. L.; Ng, S. C.; Chan, H. S. O.; Xu, G. Q.; Hor, T. S. A. Chem. Mater. 1998, 10, 718.
    (57) Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Nano Lett. 2003, 3, 447.
    (58) Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Chem. Mater. 2005, 17, 1613.
    (59) Liu, L.; Wang, T.; Li, J.; Guo, Z. X.; Dai, L.; Zhang, D.; Zhu, D. Chem. Phys. Lett. 2003, 367, 747.
    (60) Taft, B. J.; Lazareck, A. D.; Withey, G. D.; Yin, A.; Xu, J. M.; Kelley, S. O. J. Am. Chem. Soc. 2004, 126, 12750.
    (61) Ellis, A. V.; Vijayamohanan, K.; Goswami, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Lett. 2003, 3, 279.
    (62) Kim Bumsu.; Sigmund, W. M. Langmuir 2004, 20, 8239.
    (63) Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes, M. R.; Terrones, H.; Terrones, M. Nano Lett. 2003, 3, 275.
    (64) Correa-Duarte, M. A.; Sobal, N.; Liz-Marzán, L. M.; Giersig, M. Adv. Mater. 2004, 16, 23.
    (65) Han, L.; Wu, W.; Kirk, F. L.; Luo, J.; Maye, M. M.; Kariuki, N. N.; Lin, Y.; Wang, C.; Zhong, C. J. Langmuir 2004, 20, 6019.
    (66) Chaudhary, S.; Kim, J. H.; Singh, K. V.; Ozkan, M. Nano Lett. 2004, 4, 2415.

    CHAPTER 2 SYNTHESIS OF VERTICALLY ALIGNED CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION
    (1) Iijima, S. Nature 1991, 354, 56.
    (2) Thess, A.; Lee,R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
    (3) Xie, S. S.; Chang, B. H.; Li, W. Z.; Pan, Z. W.; Sun, L. F.; Mao, J. M.; Chen, X. H.; Qian, L. X.; Zhou, W. Y. Adv. Mater. 1999, 11, 1135.
    (4) Mauron, P.; Emmenegger, C. ; Züttel, A.; Nützenadel, C.; Sudan, P.; Schlapbach, L. Carbon 2002, 40, 1339.
    (5) Yokomichi, H.; Sakai, F.; Ichihara, M.; Kishimoto, N. Physica B 2002, 323, 311.
    (6) Lee, Y. T.; Kim, N. S.; Bae, S. Y.; Park, J.; Yu, S. C.; Ryu, H.; Lee, H. J. J. Phys. Chem. B. 2003, 107, 12958.
    (7) Kim, N. S.; Lee, Y. T.; Park, J.; Ryu, H.; Lee, H. J.; Choo, J.; Choi, S. Y. J. Phys. Chem. B. 2002, 106, 9286.
    (8) Jung, M.;Eun, Y. K.; Lee, J. K.; Baik, Y. J.; Lee, K. R.; Park, J. W. Diamond and Related Materials 2001, 10, 1235.
    (9) Zhang, W. D.; Wen, Y.; Liu, S. M.; Tjiu, W. C.; Xu, G. Q.; Gan, L. M. Carbon 2002, 40, 1981.
    (10) Delzeit, L.; Nguyen, C. V.; Chen, B.; Stevens, R.; Cassell, A.; Han, J.; Meyyappan, M. J. Phys. Chem. B. 2002, 106, 5629.
    (11) Eres, G.; Puretzky, A. A.; Geohegan, D. B.; Cui, H. Appl. Phys. Lett. 2004, 84, 1759.
    (12) Jang, Y. T.; Ahn, J. H.; Lee, Y. H.; Ju, B. K. Chem. Phys. Lett. 2003, 372, 745.
    (13) Han, W. Q.; Redlich, P. K.; Seeger, T.; Ernst, F.; Rühle, M. Appl. Phys. Lett. 2000, 77, 1807.
    (14) Terrones, M.; Terrones, H.; Grobert, N.; Hsu, W. K.; Zhu, Y. Q.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Kohler-Redlich, P.; Rühle, M.; Zhang, J. P.; Cheetham, A. K. Appl. Phys. Lett. 1999, 75, 3932.
    (15) Zheng, G.; Zhu, H.; Luo, Q.; Zhou, Y.; Zhao, D. Chem. Mater. 2001, 13, 2240.
    (16) Lee, C. J.; Lyu, S. C.; Cho, Y. R.; Lee, J. H.; Cho, K. I. Chem. Phys. Lett. 2001, 341, 245.
    (17) Bower, C.; Zhu, W.; Jin, S.; Zhou, O. Appl. Phys. Lett. 2000, 77, 830.
    (18) Jung, Y. J.; Wei, B.; Vajtai, R.; Ajayan. P. M. Nano Lett. 2003, 3, 561.
    (19) Cao, A.; Ajayan, P. M.; Ramanath, G.; Baskaran, R.; Turner, K. Appl. Phys. Lett. 2004, 84, 109.
    (20) Dai, H. Surface Science 2002, 500, 218.
    (21) Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Chem. Phys. Lett. 1993, 202, 509.
    (22) Kim, N. S.; Lee, Y. T.; Park, J.; Ryu, H.; Lee, H. J.; Choo, J.; Choi, S. Y. J. Phys. Chem. B 2002, 106, 9286.
    CHAPTER 3 ATTACHMENT OF GOLD NANOPARTICLES TO CARBON NANOTUBES
    (1) (a) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (b) Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. In. Ed. 1999, 38, 1808. (c) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
    (2) (a) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello V. M. Nature 2000, 404, 746. (b) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979. (c) Suzuki, D.; Tanaka, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 3518.
    (3) (a) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. (b) Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, Martin Chem. Eur. J. 2002, 8, 3808.
    (4) Taton, T. A.; Mirkin, C. A.; Letsinger R. L. Science 2000, 289, 1757.
    (5) (a) Hickman, J. J.; Ofer, D.; laibinis, P. E.; Whitesides, G. M.; Wrighton, M. S. Science 1991, 252, 688. (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin C. A. Science 1997, 277, 1078. (c) Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098.
    (6) (a) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. (b) Ipe, B. I.; Thomas, K. G.; Barazzouk, S.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem. B 2002, 106, 18. (c) Chen, M. M. Y.; Katz, A. Langmuir 2002, 18, 2413. (d) Ipe, B. I.; Thomas, K. G. J. Phys. Chem. B 2004, 108, 13265.
    (7) Iijima, S. Nature 1991, 354, 56.
    (8) (a) Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. (b) Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. (c) Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley R. E. Chem. Phys. Lett. 1999, 310, 367.
    (9) (a) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. (b) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. (c) Jhi, S.-H.; Louie, S. G.; Cohen, M. L.; Phys. Rev. Lett. 2000, 85, 1710.
    (10) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.
    (11) Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Nano Lett. 2003, 3, 447.
    (12) Ellis, A. V.; Vijayamohanan, K.; Goswami, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Lett. 2003, 3, 279.
    (13) Han, L.; Wu, W.; Kirk, F. L.; Luo, J.; Maye, M. M.; Kariuki, N. N.; Lin, Y.; Wang, C.; Zhong, C. J. Langmuir 2004, 20, 6019.
    (14) Liu, L.; Wang, T.; Li, J.; Guo, Z.-X.; Dai, L.; Zhang, D.; Zhu, D. Chem. Phys. Lett. 2003, 367, 747.
    (15) Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Chem. Mater. 2005, 17, 1613.
    (16) Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Nano Lett. 2003, 3, 275.
    (17) Kim, B.; Sigmund, W. M. Langmuir 2004, 20, 8239.
    (18) Correa-Duarte, M. A.; Sobal, N.; Liz-Marzán, L. M.; Giersig, M. Adv. Mater. 2004, 16, 2179.
    (19) Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. J. Am. Chem. Soc. 2002, 124, 9058.
    (20) Dai, H. Surface Science 2002, 500, 218.
    (21) Fujiwara, H.; Yanagida, S.; Kamat, P. V. J. Phys. Chem. B 1999, 103, 2589.
    (22) Shipway,A. N.; Lahav, M.; Willner, I. Adv. Mater. 2000, 12, 993.
    (23) (a) Phaedon Avouris, Bo N. J. Persson J. Phys. Chem. 1984, 88, 837. (b) Saito, K. J. Phys. Chem. B 1999, 103, 6579. (c) Makarova, O. V.; Ostafin, A. E.; Miyoshi, H.; Norris, J. R., Jr.; Meisel, D. J. Phys. Chem. B 1999, 103, 9080. (d) Pagnot, T.; Barchiesi, D.; Tribillon, G. Appli. Phys. Lett. 1999, 75, 4207.
    (24) Rossetti, R.; Brus, L. E.; J. Chem. Phys. 1982, 76, 1146.
    (25) Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE