研究生: |
歐燕玉 Yen-Yu Ou |
---|---|
論文名稱: |
垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定 Synthesis of Vertically Aligned Carbon Nanotubes and Carbon Nanotube-Gold Nanoparticle Composites and Spectral Analysis |
指導教授: |
黃暄益
Michael Hsuan-Yi Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 奈米碳管 、化學氣相沉積法 、金奈米粒子 、複合物 |
外文關鍵詞: | carbon nanotubes, CVD, gold nanoparticles, composites |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管為一維奈米材料,具有低密度、高機械強度、導電性等特性,自1991年被日本NEC公司研究員飯島澄男發現以來,即被視為構造奈米元件的潛力材料之一,其應用有微型化電子元件、掃瞄式探針和碳管複合物等。
本研究中以化學氣相沉積法合成出多層奈米碳管,與電弧放電法、雷射激發法比較起來,其具有裝置簡易、反應溫度較低、產率高、費用便宜等優點。首先,以濺鍍10-nm鐵膜的矽晶片為基板,在氬氣氣氛下升高溫度至 800-950 °C,在升溫至反應溫度後,即通入乙炔氣體,在高溫下乙炔會裂解成碳和氫,其中碳與催化劑鐵形成碳化鐵合金,而後碳因飽和而析出生成垂直式奈米碳管。實驗合成之碳管樣品,以掃瞄式電子顯微鏡、穿透式電子顯微鏡、拉曼光譜分析碳管的結構與成長特性,並討論改變反應時間、溫度、前處理時間及乙炔/氬氣之比例對生成碳管的直徑和成長速率之影響。
濺鍍5-nm鐵膜的矽晶片和以氯化鐵溶液旋轉塗佈之矽晶片用以探討以氨氣和氬氣為載氣對合成垂直式奈米碳管的影響。實驗結果顯示,當以5-nm鍍鐵薄膜矽晶片為催化劑基板時,反應條件為 750 °C和5%乙炔,在氨氣和氬氣的氣氛下均可合成出垂直式奈米碳管,且於氬氣氣氛下合成之碳管長度較氨氣氣氛者長。而當催化劑轉為在矽晶片上旋轉塗佈氯化鐵溶液時,在750 °C和5%乙炔反應條件下,由掃瞄式電子顯微鏡圖片發現氨氣氣氛較能促進垂直式奈米碳管的成長。以氯化鐵為催化劑,在氬氣氣氛下,需提高反應溫度至800 °C及乙炔/氬氣之比例至6.6%,垂直式碳管才可被合成出來。
碳管-奈米粒子複合物在催化、電子、光電、磁性物質、生化感測等有多方面的用途,許多合成此類的複合物的方法均已被提出,利用碳管表面的非共價鍵結可避免改變碳管原本之電子結構,然而奈米粒子表面常須自組裝薄膜保護以避免官能基化時所造成的凝聚,本文研究發現利用氫氧化鈉調整金奈米粒子溶液的pH值即可在官能基化時有效避免此現象。
本篇論文中,成功利用含胺基的多環芳香烴結合直徑約3 nm的金奈米粒子,再藉由苯環與碳管的π-π相互作用,使官能基化的金奈米粒子吸附至碳管管壁。金奈米粒子在胺化或硫醇化時,常因表面電荷中和而凝聚,本實驗中於金奈米粒子溶液中加入少量的氫氧化鈉可有效避免金奈米粒子在胺化時產生的聚集現象。實驗生成之金奈米粒子-碳管複合物,以穿透式電子顯微鏡分析其結構,可看到直徑約3 nm的金奈米粒子均勻地附著於碳管管壁,並以紫外線-可見光吸收光譜和螢光放射光譜鑑定其特性。由紫外線-可見光吸收光譜芘基之特性吸收和螢光放射光譜結果,我們可以進一步確認金奈米粒子與1-芘基甲基胺及芘基與碳管間電子的交互作用。由芘基之螢光放射光譜的放光峰III與放光峰I的強度比值可看出當金奈米粒子結合到碳管表面時,隨著反應時間變長而強度比值變大,表示反應後的芘基處於非極性的環境,更一步證實了其附著於碳管表面。
Carbon nanotubes are ideal model systems for studying the physics in one-dimensional nanomaterials and have significant potential as building blocks for various practical nanoscale electronic devices. It has been shown that carbon nanotubes could be useful for miniaturized electronic, mechanical, electromechanical, chemical and scanning probe devices and materials for macroscopic composites.
In this investigation, we synthesized aligned carbon nanotubes on 10-nm iron thin films by chemical vapor deposition using acetylene as the carbon source, and compared the ranges of nanotube lengths and diameters grown by different reaction conditions. Under both ammonia and argon environments, dense arrays of well aligned multi-walled carbon nanotubes could be synthesized at 750 °C with 5 % acetylene. Significantly better vertical CNT alignment was observed in NH3 environment than in argon using substrates spin-coated with iron chloride solution as catalyst. SDS plays an important role by making the catalyst particles from iron chloride solution well dispersed on the substrates. Using substrates spin-coated with iron chloride solution as catalyst, vertically aligned carbon nanotubes could be synthesized in argon until the reaction temperature is raised to 800 °C with 6.6 % acetylene.
Various approaches for preparing CNT/nanoparticle composites have been demonstrated. Nanoparticle-decorated nanotube heterostructures may have catalytic, electronic, optical, and magnetic applications. We have succeeded to use amine group-terminated mono- and polycyclic molecules to attach gold nanoparticles onto the surface of multi-walled carbon nanotubes through π-π interactions. Addition of a small amount of NaOH in the solution can prevent aggregation of gold nanoparticles. On the basis of UV–vis absorption studies, it is concluded that there is a strong ground state interaction between the plasmon electrons of Au nanoparticles and the π-electron cloud of 1-pyrenemethylamine. Fluorescence monitoring further confirms the presence of charge transfer and energy transfer between 1-pyrenemethylamine and gold nanoparticles and the π-π interactions between 1-pyrenemethylamine and carbon nanotubes. Similar approach can be applied to other polycyclic aromatic compounds.
CHAPTER 1 AN OVERVIEW OF CARBON NANOTUBES
(1) Iijima, S. Nature 1991, 354, 56.
(2) Dai, L.; Patil, A.; Gong, X.; Guo, Z.; Liu, L.; Liu, Y.; Zhu, D. Chem. Phys. Chem. 2003, 4, 1150.
(3) Dai, H. Surface Science 2002, 500, 218.
(4) Lau, K. T.; Hui, D. Composites: Part B 2002, 33,263.
(5) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.
(6) Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. Journal of Physics and Chemistry of Solids 2000, 61, 1153.
(7) 鄭凱文,國立東華大學材料科學與工程研究所碩士論文,第8頁,民國九十一年。
(8) Jang, J. W.; Lee, D. K.; Lee, C. E.; Lee, T. J.; Lee, C. J.; Noh, S. J. Solid State Commun. 2002, 122, 619.
(9) Tekleab, D.; Czerw, R.; Carroll, D. L.; Ajayan, P. M. Appl. Phys. Lett. 2000, 76, 3594.
(10) Dai, H. Acc. Chem. Res. 2002, 35, 1035.
(11) Spindt, C. A.; Holland, C. E.; Rosengreen, A.; Brodie, I. J. Vac. Sci. Technol. B 1993, 11, 468.
(12) Zhou, O.; Shimoda, H.; Gao, B,; Oh, S,; Flemig, L.; Yue, G. Acc. Chem. Res. 2002, 35, 1045
(13) Tersoff, J. Phys. Rev. Lett. 1998, 61, 2879.
(14) Brenner, D. W. Phys. Rev. B 1990, 42, 9458.
(15) Osman, M. A.; Srivastava, D. Nanotechnology 2001, 12, 21.
(16) Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, M. S.; Selegue, J. P. Nano. Lett. 2002, 2, 615.
(17) Zhang, M.; Yudasaka, M.; Bandow, S.; Iijima, S. Chem. Phys. Lett. 2003, 369, 680.
(18) Balasubramanian, K.; Burghard, M. Small 2005, 1, 180.
(19) Wiles, P. G.; Abrahamson, J. Carbon 1978, 16, 341.
(20) Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
(21) Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R. E. Chem. Phys. Lett. 1995, 243, 49.
(22) Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996; 273, 483.
(23) Journet, C.; Bernier, P. Appl. Phys. A 1998, 67, 1.
(24) Oberlin A.; Endo, M. J. Cryst. Growth 1976, 32, 335.
(25) Baker, R. T. K. Carbon 1989, 27, 315.
(26) Lee, C. J.; Park, J. Appl. Phys. Lett. 2000, 77, 3397.
(27) Tanemura, M.; Iwata, K.; Takahashi, K.; Fujimoto, Y.; Okuyama, F.; Sugie, H.; Filip, V. J. Appl. Phys. 2001, 90, 1529.
(28) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N.; Science 1998, 282, 1105.
(29) Hu, M.; Murakami, Y.; Ogura, M.; Maruyama, S.; Okubo, T. Journal of Catalysis 2004, 225, 230.
(30) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701.
(31) Huang, S.; Dai, L.; Mau, A. W. H. J. Phys. Chem. B 1999, 103, 4223.
(32) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Provencio, M. P. Science 1998, 282, 1105.
(33) Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.; Ogura, M.; Okubo, T.; Maruyama, S. Chem. Phys. Lett. 2004, 385, 298.
(34) Hou, H.; Schaper, A. K.; Weller, F.; Greiner, A. Chem. Mater. 2002, 14, 3990.
(35) Kind, H.; Bonard, J.-M.; Forro, L.; Kern, K.; Hernadi, K.; Nilsson, L.-O.; Schlapbach, L. Langmuir 2000, 16, 6877.
(36) Pan, Z.; Zhu, H.; Zhang, Z.; Im, H. j.; Dai, S.; Beach, D. B.; Lowndes, D. H. J. Phys. Chem. B 2003, 107, 1338.
(37) Yang, Y.; Huang, S.; He, H.; Mau, A. W. H.; Dai, L. J. Am. Chem. Soc. 1999, 121, 10832.
(38) Huang, S.; Mau, A. W. H.; Turney, T. W.; White, P. A.; Dai, L. J. Phys. Chem. B 2000, 104, 2193.
(39) Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Chem. Mater. 2003, 15, 1598.
(40) Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512.
(41) Huang, S.; Mau, A. W. H. J. Phys. Chem. B 2003, 107, 8285.
(42) Wang, X. B.; Liu, Y. Q.; Hu, P. A.; Yu, G.; Xiao, K.; Zhu, D. B. Adv. Mater. 2002, 14, 1557.
(43) Cao, A.; Baskaran, R.; Frederick, M. J.; Turner, K.; Ajayan, P. M.; Ramanath, G. Adv. Mater. 2003, 15, 1105.
(44) Cassell, A. M.; Franklin, N. R.; Tombler, T. W.; Chan, E. M.; Han, J.; Dai, H. J. Am. Chem. Soc. 1999, 121, 7975.
(45) Franklin N. R.; Dai, H. Adv. Mater. 2000, 12, 890.
(46) Jung, Y. J.; Homma, Y.; Vajtai, R.; Kobayashi, Y.; Ogino, T.; Ajayan, P. M. Nano Lett. 2004, 4, 1109.
(47) Huang, L. Wind, S. J.; O’Brien, S. P. Nano Lett. 2003, 3,299.
(48) Zhang, Y.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. Appl. Phys. Lett. 2001, 79, 3155.
(49) Huang, S.; Maynor, B.; Cai, X.; Liu, J. Adv. Mater. 2003, 15, 1651.
(50) Huang, S.; Cai, X.; Du, C.; Liu, J. J. Phys. Chem. B 2003, 107, 13251.
(51) Huang, S.; Woodson, M.; Smalley, R. E.; Liu, J. Nano Lett., 2004, 4, 1025.
(52) Huang, S.; Cai, X.; Liu, J. J. Am. Chem. Soc. 2003, 125, 5636.
(53) Hirsch, A. Angew. Chem. Int. Ed. 2002, 41, 1853.
(54) Satishkumar, B. C.; Vog, E. M.; Govindaraj, A.; Rao, C. N. R. J. Phys. D: Appl. Phys. 1996, 29, 3173.
(55) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.
(56) Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K. L.; Ng, S. C.; Chan, H. S. O.; Xu, G. Q.; Hor, T. S. A. Chem. Mater. 1998, 10, 718.
(57) Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Nano Lett. 2003, 3, 447.
(58) Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Chem. Mater. 2005, 17, 1613.
(59) Liu, L.; Wang, T.; Li, J.; Guo, Z. X.; Dai, L.; Zhang, D.; Zhu, D. Chem. Phys. Lett. 2003, 367, 747.
(60) Taft, B. J.; Lazareck, A. D.; Withey, G. D.; Yin, A.; Xu, J. M.; Kelley, S. O. J. Am. Chem. Soc. 2004, 126, 12750.
(61) Ellis, A. V.; Vijayamohanan, K.; Goswami, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Lett. 2003, 3, 279.
(62) Kim Bumsu.; Sigmund, W. M. Langmuir 2004, 20, 8239.
(63) Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes, M. R.; Terrones, H.; Terrones, M. Nano Lett. 2003, 3, 275.
(64) Correa-Duarte, M. A.; Sobal, N.; Liz-Marzán, L. M.; Giersig, M. Adv. Mater. 2004, 16, 23.
(65) Han, L.; Wu, W.; Kirk, F. L.; Luo, J.; Maye, M. M.; Kariuki, N. N.; Lin, Y.; Wang, C.; Zhong, C. J. Langmuir 2004, 20, 6019.
(66) Chaudhary, S.; Kim, J. H.; Singh, K. V.; Ozkan, M. Nano Lett. 2004, 4, 2415.
CHAPTER 2 SYNTHESIS OF VERTICALLY ALIGNED CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION
(1) Iijima, S. Nature 1991, 354, 56.
(2) Thess, A.; Lee,R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
(3) Xie, S. S.; Chang, B. H.; Li, W. Z.; Pan, Z. W.; Sun, L. F.; Mao, J. M.; Chen, X. H.; Qian, L. X.; Zhou, W. Y. Adv. Mater. 1999, 11, 1135.
(4) Mauron, P.; Emmenegger, C. ; Züttel, A.; Nützenadel, C.; Sudan, P.; Schlapbach, L. Carbon 2002, 40, 1339.
(5) Yokomichi, H.; Sakai, F.; Ichihara, M.; Kishimoto, N. Physica B 2002, 323, 311.
(6) Lee, Y. T.; Kim, N. S.; Bae, S. Y.; Park, J.; Yu, S. C.; Ryu, H.; Lee, H. J. J. Phys. Chem. B. 2003, 107, 12958.
(7) Kim, N. S.; Lee, Y. T.; Park, J.; Ryu, H.; Lee, H. J.; Choo, J.; Choi, S. Y. J. Phys. Chem. B. 2002, 106, 9286.
(8) Jung, M.;Eun, Y. K.; Lee, J. K.; Baik, Y. J.; Lee, K. R.; Park, J. W. Diamond and Related Materials 2001, 10, 1235.
(9) Zhang, W. D.; Wen, Y.; Liu, S. M.; Tjiu, W. C.; Xu, G. Q.; Gan, L. M. Carbon 2002, 40, 1981.
(10) Delzeit, L.; Nguyen, C. V.; Chen, B.; Stevens, R.; Cassell, A.; Han, J.; Meyyappan, M. J. Phys. Chem. B. 2002, 106, 5629.
(11) Eres, G.; Puretzky, A. A.; Geohegan, D. B.; Cui, H. Appl. Phys. Lett. 2004, 84, 1759.
(12) Jang, Y. T.; Ahn, J. H.; Lee, Y. H.; Ju, B. K. Chem. Phys. Lett. 2003, 372, 745.
(13) Han, W. Q.; Redlich, P. K.; Seeger, T.; Ernst, F.; Rühle, M. Appl. Phys. Lett. 2000, 77, 1807.
(14) Terrones, M.; Terrones, H.; Grobert, N.; Hsu, W. K.; Zhu, Y. Q.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Kohler-Redlich, P.; Rühle, M.; Zhang, J. P.; Cheetham, A. K. Appl. Phys. Lett. 1999, 75, 3932.
(15) Zheng, G.; Zhu, H.; Luo, Q.; Zhou, Y.; Zhao, D. Chem. Mater. 2001, 13, 2240.
(16) Lee, C. J.; Lyu, S. C.; Cho, Y. R.; Lee, J. H.; Cho, K. I. Chem. Phys. Lett. 2001, 341, 245.
(17) Bower, C.; Zhu, W.; Jin, S.; Zhou, O. Appl. Phys. Lett. 2000, 77, 830.
(18) Jung, Y. J.; Wei, B.; Vajtai, R.; Ajayan. P. M. Nano Lett. 2003, 3, 561.
(19) Cao, A.; Ajayan, P. M.; Ramanath, G.; Baskaran, R.; Turner, K. Appl. Phys. Lett. 2004, 84, 109.
(20) Dai, H. Surface Science 2002, 500, 218.
(21) Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Chem. Phys. Lett. 1993, 202, 509.
(22) Kim, N. S.; Lee, Y. T.; Park, J.; Ryu, H.; Lee, H. J.; Choo, J.; Choi, S. Y. J. Phys. Chem. B 2002, 106, 9286.
CHAPTER 3 ATTACHMENT OF GOLD NANOPARTICLES TO CARBON NANOTUBES
(1) (a) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (b) Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. In. Ed. 1999, 38, 1808. (c) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
(2) (a) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello V. M. Nature 2000, 404, 746. (b) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979. (c) Suzuki, D.; Tanaka, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 3518.
(3) (a) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. (b) Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, Martin Chem. Eur. J. 2002, 8, 3808.
(4) Taton, T. A.; Mirkin, C. A.; Letsinger R. L. Science 2000, 289, 1757.
(5) (a) Hickman, J. J.; Ofer, D.; laibinis, P. E.; Whitesides, G. M.; Wrighton, M. S. Science 1991, 252, 688. (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin C. A. Science 1997, 277, 1078. (c) Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098.
(6) (a) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. (b) Ipe, B. I.; Thomas, K. G.; Barazzouk, S.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem. B 2002, 106, 18. (c) Chen, M. M. Y.; Katz, A. Langmuir 2002, 18, 2413. (d) Ipe, B. I.; Thomas, K. G. J. Phys. Chem. B 2004, 108, 13265.
(7) Iijima, S. Nature 1991, 354, 56.
(8) (a) Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. (b) Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. (c) Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley R. E. Chem. Phys. Lett. 1999, 310, 367.
(9) (a) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. (b) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. (c) Jhi, S.-H.; Louie, S. G.; Cohen, M. L.; Phys. Rev. Lett. 2000, 85, 1710.
(10) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.
(11) Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Nano Lett. 2003, 3, 447.
(12) Ellis, A. V.; Vijayamohanan, K.; Goswami, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Lett. 2003, 3, 279.
(13) Han, L.; Wu, W.; Kirk, F. L.; Luo, J.; Maye, M. M.; Kariuki, N. N.; Lin, Y.; Wang, C.; Zhong, C. J. Langmuir 2004, 20, 6019.
(14) Liu, L.; Wang, T.; Li, J.; Guo, Z.-X.; Dai, L.; Zhang, D.; Zhu, D. Chem. Phys. Lett. 2003, 367, 747.
(15) Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Chem. Mater. 2005, 17, 1613.
(16) Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Nano Lett. 2003, 3, 275.
(17) Kim, B.; Sigmund, W. M. Langmuir 2004, 20, 8239.
(18) Correa-Duarte, M. A.; Sobal, N.; Liz-Marzán, L. M.; Giersig, M. Adv. Mater. 2004, 16, 2179.
(19) Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. J. Am. Chem. Soc. 2002, 124, 9058.
(20) Dai, H. Surface Science 2002, 500, 218.
(21) Fujiwara, H.; Yanagida, S.; Kamat, P. V. J. Phys. Chem. B 1999, 103, 2589.
(22) Shipway,A. N.; Lahav, M.; Willner, I. Adv. Mater. 2000, 12, 993.
(23) (a) Phaedon Avouris, Bo N. J. Persson J. Phys. Chem. 1984, 88, 837. (b) Saito, K. J. Phys. Chem. B 1999, 103, 6579. (c) Makarova, O. V.; Ostafin, A. E.; Miyoshi, H.; Norris, J. R., Jr.; Meisel, D. J. Phys. Chem. B 1999, 103, 9080. (d) Pagnot, T.; Barchiesi, D.; Tribillon, G. Appli. Phys. Lett. 1999, 75, 4207.
(24) Rossetti, R.; Brus, L. E.; J. Chem. Phys. 1982, 76, 1146.
(25) Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039.